Thin film dynamics: theory and applications

  • Andrea L. Bertozzi
  • Mark Bowen
Part of the NATO Science Series book series (NAII, volume 75)


This paper is based on a series of four lectures, by the first author, on thin films and moving contact lines. Section 1 presents an overview of the moving contact line problem and introduces the lubrication approximation. Section 2 summarizes results for positivity preserving schemes. Section 3 discusses the problem of films driven by thermal gradients with an opposing gravitational force. Such systems yield complex dynamics featuring undercompressive shocks. We conclude in Section 4 with a discussion of dewetting films.


Contact Line Travel Wave Solution Finite Difference Scheme Compressive Shock Positivity Preserve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Abeyaratne and J. Knowles, Implications of viscosity and strain gradient effects for the kinetics of propagating phase boundaries in solids, SIAM J. Appl. Math. 51 (1991), 1205–1221.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    D. J. Acheson, Elementary Fluid Dynamics, Oxford University Press, Oxford, 1990.MATHGoogle Scholar
  3. [3]
    R. Almgren, A. L. Bertozzi, and M. P. Brenner, Stable and unstable singularities in the unforced Hele-Shaw cell, Phys. Fluids 8 (6) (1996), 1356–1370.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    D. G. Aronson and J. Graveleau, A self-similiar solution to the focusing problem for the porous medium equation, European J. Appl. Math. 4 (1993), 65.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    F. S. Bai, C. M. Elliott, A. Gardiner, A. Spence, and A. M. Stuart, The viscous Cahn-Hilliard equation. I. Computations, Nonlinearity 8 (2) (1995), 131–160.MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    F. S. Bai, A. Spence, and A. M. Stuart, Numerical computations of coarsening in the one-dimensional Cahn-Hilliard model of phase separation, Phys. D 78 (3-4) (1994), 155–165.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    G. I. Barenblatt, Scaling, Self-similarity, and Intermediate Asymptotics, Cambridge University Press, Cambridge, 1996.MATHGoogle Scholar
  8. [8]
    J. W. Barrett, J. F. Blowey, and H. Garcke, Finite element approximation of a fourth order degenerate parabolic equation, Numer. Math. 80 (4) (1998), 525–556.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    P. W. Bates and P. C. Fife, Spectral comparison principles for the Cahn-Hilliard and phase-field equations, and time scales for coarsening, Phys. D 43 (2-3) (1990), 335–348.MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    R. M. Beam and R. F. Warming, Alternating direction implicit methods for parabolic equations with a mixed derivative, SIAM J. Sci. Statist. Comput. 1 (1980), 131–159.MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    E. Beretta, M. Berstch, and R. D. Passo, Nonnegative solutions of a fourth order nonlinear degenerate parabolic equation, Arch. Rational Mech. Anal. 129 (1995), 175–200.MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    F. Bernis, Change in sign of the solutions to some parabolic problems, in: Nonlinear Analysis and Applications (Arlington, Tex., 1986) (V. Lakshmikantham, ed.), Lecture Notes in Pure and Appl. Math. 109, Dekker, New York, 1987, 75–82.Google Scholar
  13. [13]
    F. Bernis, Finite speed of propagation and continuity of the interface for slow viscous flows, Adv. Differential Equations 1 (3) (1996), 337–368.MathSciNetMATHGoogle Scholar
  14. [14]
    F. Bernis, Finite speed of propagation for thin viscous flows when 2 ≤ n < 3, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), 1169–1174.MathSciNetMATHGoogle Scholar
  15. [15]
    F. Bernis and A. Friedman, Higher order nonlinear degenerate parabolic equations, J. Differential Equations 83 (1990), 179–206.MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    F. Bernis, L. A. Peletier, and S. M. Williams, Source type solutions of a fourth order nonlinear degenerate parabolic equation, Nonlinear Anal.18 (3) (1992), 217–234.MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    A. L. Bertozzi, Loss and gain of regularity in a lubrication equation for thin viscous films, in: Free Boundary Problems: Theory and Applications (J. I. Díaz et al., eds.), Pitman Res. Notes Math. Ser. 323, Longman, Harlow, 1995, 72–85.Google Scholar
  18. [18]
    A. L. Bertozzi, Symmetric singularity formation in lubrication-type equations for interface motion, SIAM J. Appl. Math. 56 (3) (1996), 681–714.MathSciNetMATHCrossRefGoogle Scholar
  19. [19]
    A. L. Bertozzi, The mathematics of moving contact lines in thin liquid films, Notices Amer. Math. Soc. 45 (6) (1998), 689–697.MathSciNetMATHGoogle Scholar
  20. [20]
    A. L. Bertozzi and M. P. Brenner, Linear stability and transient growth in driven contact lines, Phys. Fluids 9 (3) (1997), 530–539.MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    A. L. Bertozzi, M. P. Brenner, T. F. Dupont, and L. P. Kadanoff, Singularities and similarities in interface flow, in: Trends and Perspectives in Applied Mathematics (L. Sirovich, ed.), Appl. Math. Sci. 100, Springer-Verlag, New York, 1994, 155–208.CrossRefGoogle Scholar
  22. [22]
    A. L. Bertozzi, G. Grün, and T. P. Witelski, Dewetting films: bifurcations and concentrations, Nonlinearity 14 (6) (2001), 1569–1592.MathSciNetMATHCrossRefGoogle Scholar
  23. [23]
    A. L. Bertozzi, A. Münch, X. Fanton, and A.-M. Cazabat, Contact line stability and ‘undercompressive shocks’ in driven thin film flow, Phys. Rev. Lett. 81 (23) (1998), 5169–5172.CrossRefGoogle Scholar
  24. [24]
    A. L. Bertozzi, A. Münch, and M. Shearer, Undercompressive shocks in thin film flows, Phys. D 134 (4) (1999), 431–464.MathSciNetMATHCrossRefGoogle Scholar
  25. [25]
    A. L. Bertozzi, A. Münch, M. Shearer, and K. Zumbrun, Stability of compressive and undercompressive thin film travelling waves, European J. Appl. Math. 12 (3) (2001), 253–291.MathSciNetMATHGoogle Scholar
  26. [26]
    A. L. Bertozzi and M. C. Pugh, The lubrication approximation for thin viscous films: regularity and long time behavior of weak solutions, Comm. Pure Appl. Math. 49 (2) (1996), 85–123.MathSciNetMATHCrossRefGoogle Scholar
  27. [27]
    A. L. Bertozzi and M. C. Pugh, Long-wave instabilities and saturation in thin film equations, Comm. Pure Appl. Math. 51 (6) (1998), 625–661.MathSciNetCrossRefGoogle Scholar
  28. [28]
    A. L. Bertozzi and M. Shearer, Existence of undercompressive travelling waves in thin film equations, SIAM J. Math. Anal. 32 (1) (2000), 194–213.MathSciNetMATHCrossRefGoogle Scholar
  29. [29]
    J. Bischof, D. Scherer, S. Herminghaus, and P. Leiderer, Dewetting modes of thin metallic films: Nucleation of holes and spinodal dewetting, Phys. Rev. Lett. 77 (8) (1996), 1536–1539.CrossRefGoogle Scholar
  30. [30]
    S. Boatto, L. Kadanoff, and P. Olla, Travelling wave solutions to thin film equations, Phys. Rev. E 48 (1993), 4423.MathSciNetCrossRefGoogle Scholar
  31. [31]
    A. Bourlioux and A. J. Majda, Theoretical and numerical structure of unstable detonations, Philos. Trans. Roy. Soc. London Ser. A 350 (1995), 29–69.MATHCrossRefGoogle Scholar
  32. [32]
    R. Buckingham, M. Shearer, and A. L. Bertozzi, Thin films traveling waves and the navier slip condition, preprint, Duke University, 2002.Google Scholar
  33. [33]
    J. P. Burelbach, S. G. Bankoff, and S. H. Davis, Nonlinear stability of evaporating/condensing liquid films, J. Fluid Mech. 195 (1988), 463–494.MATHCrossRefGoogle Scholar
  34. [34]
    P. Carles and A.-M. Cazabat, The thickness of surface-tension-gradient-driven spreading films, J. Colloid Interface Sci. 157 (1993), 196–201.CrossRefGoogle Scholar
  35. [35]
    A.-M. Cazabat, F. Heslot, S. M. Troian, and P. Carles, Finger instability of this spreading films driven by temperature gradients, Nature 346 (6287) (1990), 824–826.CrossRefGoogle Scholar
  36. [36]
    P. Constantin, T. F. Dupont, R. E. Goldstein, L. P. Kadanoff, M. J. Shelley, and S.-M. Zhou, Droplet breakup in a model of the Hele-Shaw cell, Phys. Rev. E 47 (6) (1993), 4169–4181.MathSciNetCrossRefGoogle Scholar
  37. [37]
    P. G. de Gennes, Wetting: statics and dynamics, Rev. Modern Phys. 57 (1985), 827–880.CrossRefGoogle Scholar
  38. [38]
    T. F. Dupont, R. E. Goldstein, L. P. Kadanoff, and S.-M. Zhou, Finite-time singularity formation in Hele Shaw systems, Phys. Rev. E 47 (6) (1993), 4182–4196.MathSciNetCrossRefGoogle Scholar
  39. [39]
    E. B. Dussan V and S. Davis, On the motion of a fluid-fluid interface along a solid surface, J. Fluid Mech. 65 (1974), 71–95.MATHCrossRefGoogle Scholar
  40. [40]
    J. C. Eilbeck, J. E. Furter, and M. Grinfeld, On a stationary state characterization of transition from spinodal decomposition to nucleation behaviour in the Cahn-Hilliard model of phase separation, Phys. Lett. A 135 (4-5) (1989), 272–275.MathSciNetCrossRefGoogle Scholar
  41. [41]
    M. Elbaum, S. G. Lipsom, and J. F. Wettlaufer, Evaporation pre-empts complete wetting, Europhys. Lett. 29 (6) (1995), 457–462.CrossRefGoogle Scholar
  42. [42]
    M. H. Eres, L. W. Schwartz, and R. V. Roy, Fingering phenomena for driven coating films, Phys. Fluids 12 (6) (2000), 1278–1295.MathSciNetMATHCrossRefGoogle Scholar
  43. [43]
    T. Erneux and D. Gallez, Can repulsive forces lead to stable patterns in thin liquid films?, Phys. Fluids 9 (4) (1997), 1194–1196.CrossRefGoogle Scholar
  44. [44]
    L. C. Evans, Weak Convergence Methods for Nonlinear Partial Differential Equations, CBMS Regional Conf. Ser. in Math. 74, Amer. Math. Soc., Providence, RI, 1990.MATHGoogle Scholar
  45. [45]
    L. C. Evans, Partial Differential Equations, Grad. Stud. Math. 19, Amer. Math. Soc., Providence, RI, 1998.MATHGoogle Scholar
  46. [46]
    X. Fanton, A.-M. Cazabat, and D. Quéré, Thickness and shape of films driven by a Marangoni flow, Langmuir 12 (24) (1996), 5875–5880.CrossRefGoogle Scholar
  47. [47]
    R. Ferreira and F. Bernis, Source-type solutions to thin-film equations in higher dimensions, European J. Appl. Math. 8 (5) (1997), 507–524.MathSciNetMATHCrossRefGoogle Scholar
  48. [48]
    N. Fraysse and G. M. Homsy, An experimental study of rivulet instabilities in centrifugal spin coating of viscous Newtonian and non-Newtonian fluids, Phys. Fluids 6 (4) (1994), 1491–1504.CrossRefGoogle Scholar
  49. [49]
    K. Glasner, A diffuse interface approach to Hele-Shaw flow, preprint, Duke University, 2001.Google Scholar
  50. [50]
    S. Goldstein, ed., Modern Developments in Fluid Dynamics, vol. 2, Dover Publ., New York, 1965.Google Scholar
  51. [51]
    A. A. Golovin, B. Y. Rubinstein, and L. M. Pismen, Effect of van der Waals interaction on the fingering instability of thermally driven thin wetting films, Langmuir 17 (2001), 3930–3936.CrossRefGoogle Scholar
  52. [52]
    H. P. Greenspan, On the motion of a small viscous droplet that wets a surface, J. Fluid Mech. 84 (1978), 125–143.MATHCrossRefGoogle Scholar
  53. [53]
    M. Grinfeld and A. Novick-Cohen, The viscous Cahn-Hilliard equation: Morse decomposition and structure of the global attractor, Trans. Amer. Math. Soc. 351 (6) (1999), 2375–2406.MathSciNetMATHCrossRefGoogle Scholar
  54. [54]
    G. Grün, On the convergence of entropy consistent numerical schemes for lubrication-type equations in multiple space dimensions, to appear in Math. Comp. Google Scholar
  55. [55]
    G. Grün, On the numerical simulation of wetting phenomena, in: Proc. 15th GAMM-Seminar Kiel, Numerical Methods of Composite Materials (W. Hackbusch and S. Sauter, eds.), Vieweg-Verlag, Braunschweig, to appear.Google Scholar
  56. [56]
    G. Grün and M. Rumpf, Nonnegativity preserving convergent schemes for the thin film equation, Numer. Math. 87 (1) (2000), 113–152.MathSciNetMATHCrossRefGoogle Scholar
  57. [57]
    P. J. Haley and M. J. Miksis, The effect of the contact line on droplet spreading, J. Fluid Mech. 223 (1991), 57–81.MathSciNetMATHCrossRefGoogle Scholar
  58. [58]
    S. Herminghaus, K. Jacobs, K. Mecke, J. Bischof, A. Fery, M. Ibn-Elhaj, and S. Schlagowski, Spinodal dewetting in liquid crystal and liquid metal films, Science 282 (5390) (1998), 916–919.CrossRefGoogle Scholar
  59. [59]
    C. Huh and L. E. Scriven, Hydrodynamic model of steady movement of a solid/liquid/fluid contact line, J. Colloid Interface Sci. 35 (1971), 85–101.CrossRefGoogle Scholar
  60. [60]
    H. Huppert, Flow and instability of a viscous current down a slope, Nature 300 (1982), 427–429.CrossRefGoogle Scholar
  61. [61]
    E. Isaacson, D. Marchesin, and B. Plohr, Transitional waves for conservation laws, SIAM J. Math. Anal. 21 (1990), 837–866.MathSciNetMATHCrossRefGoogle Scholar
  62. [62]
    J. N. Israelachvili, Intermolecular and Surface Forces, 2nd ed., Academic Press, New York, 1992.Google Scholar
  63. [63]
    D. E. Kataoka and S. M. Troian, A theoretical study of instabilities at the advancing front of thermally driven coating films, J. Colloid Interface Sci. 192 (1997), 350–362.CrossRefGoogle Scholar
  64. [64]
    D. E. Kataoka and S. M. Troian, Stabilizing the advancing front of thermally driven climbing films, J. Colloid Interface Sci. 203 (1998), 335–344.CrossRefGoogle Scholar
  65. [65]
    J. B. Keller and S. Antman, eds., Bifurcation Theory and Nonlinear Eigenvalue Problems, Benjamin, New York-Amsterdam, 1969.MATHGoogle Scholar
  66. [66]
    R. Konnur, K. Kargupta, and A. Sharma, Instability and morphology of thin liquid films on chemically heterogeneous substrates, Phys. Rev. Lett. 84 (5) (2000), 931–934.CrossRefGoogle Scholar
  67. [67]
    N. Kopell and L. N. Howard, Bifurcations and trajectories joining critical points, Adv. Math. 18 (1975), 306–358.MathSciNetMATHCrossRefGoogle Scholar
  68. [68]
    R. S. Laugesen and M. C. Pugh, Energy levels of steady states for thin film type equations,, to appear in J. Differential Equations.Google Scholar
  69. [69]
    R. S. Laugesen and M. C. Pugh, Linear stability of steady states for thin film and Cahn-Hilliard type equations, Arch. Rational Mech. Anal. 154 (1) (2000), 3–51.MathSciNetMATHCrossRefGoogle Scholar
  70. [70]
    P. D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, CBMS-NSF Regional Conf. Ser. in Appl. Math. 11, SIAM, Philadelphia, PA, 1973.MATHCrossRefGoogle Scholar
  71. [71]
    F. Melo, J. F. Joanny, and S. Fauve, Fingering intability of spinning drops, Phys. Rev. Lett. 63 (18) (1989), 1958–1961.CrossRefGoogle Scholar
  72. [72]
    V. S. Mitlin, Dewetting of a solid surface: analogy with spinodal decomposition, J. Colloid Interface Sci. 156 (1993), 491–497.CrossRefGoogle Scholar
  73. [73]
    V. S. Mitlin and N. V. Petviashvili, Nonlinear dynamics of dewetting: kinetically stable structures, Phys. Lett. A 192 (1994), 323–326.CrossRefGoogle Scholar
  74. [74]
    A. Münch, Shock transitions in Marangoni-gravity driven thin film flow, Nonlinearity 13 (2000), 731–746.MathSciNetMATHCrossRefGoogle Scholar
  75. [75]
    A. Novick-Cohen and L. A. Peletier, Steady states of the one-dimensional Cahn-Hilliard equation, Proc. Roy. Soc. Edinburgh Sect. A 123 (6) (1993), 1071-1098.MathSciNetMATHCrossRefGoogle Scholar
  76. [76]
    A. Oron and S. G. Bankoff, Dewetting of a heated surface by an evaporating liquid film under conjoining/disjoing pressures, J. Colloid Interface Sci. 218 (1999), 152–166.CrossRefGoogle Scholar
  77. [77]
    A. Oron and S. G. Bankoff, Dynamics of a condensing liquid film under conjoining/disjoining pressures, Phys. Fluids 13 (5) (2001), 1107–1117.CrossRefGoogle Scholar
  78. [78]
    A. Oron, S. H. Davis, and S. G. Bankoff, Long-scale evolution of thin liquid films, Rev. Modern Phys. 69 (3) (1997), 931–980.CrossRefGoogle Scholar
  79. [79]
    L. A. Peletier, The porous media equation, in: Applications of Nonlinear Analysis in the Physical Sciences (H. Amann et al., eds.), Pitman, New York, 1981, 229–241.Google Scholar
  80. [80]
    G. Reiter, Dewetting of thin polymer films, Phys. Rev. Lett. 68 (1) (1992), 75–78.MathSciNetCrossRefGoogle Scholar
  81. [81]
    L. G. Reyna and M. J. Ward, Metastable internal layer dynamics for the viscous Cahn-Hilliard equation, Methods Appl. Anal. 2 (3) (1995), 285–306.MathSciNetMATHGoogle Scholar
  82. [82]
    M. Schneemilch and A.-M. Cazabat, Shock separation in wetting films driven by thermal gradients, Langmuir 16 (25) (2000), 9850–9856.CrossRefGoogle Scholar
  83. [83]
    M. Schneemilch and A.-M. Cazabat, Wetting films in thermal gradients, Langmuir 16 (23) (2000), 8796–8801.CrossRefGoogle Scholar
  84. [84]
    L. W. Schwartz, Viscous flows down an inclined plane: Instability and finger formation, Phys. Fluids A 1 (3) (1989), 443–445.MATHCrossRefGoogle Scholar
  85. [85]
    L. W. Schwartz, R. V. Roy, R. R. Eley, and S. Petrash, Dewetting patterns in a drying liquid film, J. Colloid Interface Sci. 234 (2) (2001), 363–374.CrossRefGoogle Scholar
  86. [86]
    A. Sharma and R. Khanna, Pattern formation in unstable thin liquid films, Phys. Rev. Lett. 81 (16) (1998), 3463–3466.CrossRefGoogle Scholar
  87. [87]
    A. Sharma and R. Khanna, Pattern formation in unstable thin liquid films under the influence of antagonistic short- and long-range forces, J. Chem. Phys. 110 (10) (1999), 4929–4936.CrossRefGoogle Scholar
  88. [88]
    M. Shearer, D. G. Schaeffer, D. Marchesin, and P. Paes-Leme, Solution of the Riemann problem for a prototype 2 × 2 system of non-strictly hyperbolic conservation laws, Arch. Rational Mech. Anal. 97 (1987), 299–320.MathSciNetMATHCrossRefGoogle Scholar
  89. [89]
    M. Slemrod, Admissibility criteria for propagating phase boundaries in a van der Waals fluid, Arch. Rational Mech. Anal. 81 (1983), 301–315.MathSciNetMATHCrossRefGoogle Scholar
  90. [90]
    V. M. Starov, Spreading of droplets of nonvolatile liquids over a flat solid, J. Colloid Interface Sci. USSR 45 (1983), 1154.Google Scholar
  91. [91]
    S. M. Troian, E. Herbolzheimer, S. A. Safran, and J. F. Joanny, Fingering instabilities of driven spreading films, Europhys. Lett. 10 (1) (1989), 25–30.CrossRefGoogle Scholar
  92. [92]
    M. P. Valignat, S. Villette, J. Li, R. Barberi, R. Bartolino, E. Dubois-Violette, and A.-M. Cazabat, Wetting and anchoring of a nematic liquid crystal on a rough surface, Phys. Rev. Lett. 77 (10) (1996), 1994–1997.CrossRefGoogle Scholar
  93. [93]
    F. Vandenbrouck, M. P. Valignat, and A.-M. Cazabat, Thin nematic films: metastability and spinodal dewetting, Phys. Rev. Lett. 82 (13) (1999), 2693–2696.CrossRefGoogle Scholar
  94. [94]
    M. J. Ward, Metastable patterns, layer collapses, and coarsening for a one-dimensional Ginzburg-Landau equation, Stud. Appl. Math. 91 (1) (1994), 51–93.MathSciNetMATHGoogle Scholar
  95. [95]
    M. B. Williams and S. H. Davis, Nonlinear theory of film rupture, J. Colloid Interface Sci. 90 (1982), 220–228.CrossRefGoogle Scholar
  96. [96]
    T. P. Witelski and A. J. Bernoff, Stability of self-similar solutions for van der Waals driven thin film rupture, Phys. Fluids 11 (9) (1999), 2443–2445.MathSciNetMATHCrossRefGoogle Scholar
  97. [97]
    T. P. Witelski and A. J. Bernoff, Dynamics of three-dimensional thin film rupture, Phys. D 147 (2000), 155–176.MathSciNetMATHCrossRefGoogle Scholar
  98. [98]
    T. P. Witelski and M. Bowen, ADI methods for high order parabolic equations, preprint, Duke University, 2001.Google Scholar
  99. [99]
    C. C. Wu, New theory of MHD shock waves, in: Viscous Profiles and Numerical Methods for Shock Waves (M. Shearer, ed.), SIAM, Philadelphia, PA, 1991.Google Scholar
  100. [100]
    R. Xie, A. Karim, J. F. Douglas, C. C. Han, and R. A. Weiss, Spinodal dewetting of thin polymer films, Phys. Rev. Lett 81 (6) (1998), 1251–1254.CrossRefGoogle Scholar
  101. [101]
    W. W. Zhang and J. R. Lister, Similarity solutions for van der Waals rupture of a thin film on a solid substrate, Phys. Fluids 11 (9) (1999), 2454–2462.MathSciNetMATHCrossRefGoogle Scholar
  102. [102]
    L. Zhornitskaya and A. L. Bertozzi, Positivity-preserving numerical schemes for lubrication-type equations, SIAM J. Numer. Anal. 37 (2) (2000), 523–555 (electronic).MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • Andrea L. Bertozzi
    • 1
  • Mark Bowen
    • 1
  1. 1.Department of MathematicsDuke UniversityDurhamUSA

Personalised recommendations