Advertisement

Recent developments in the theory of front propagation and its applications

  • Panagiotis E. Souganidis
Part of the NATO Science Series book series (NAII, volume 75)

Abstract

We describe a new theory for studying the geometric motion of interfaces past the first times singularities develop. We also show how this theory allows one to justify and study the development of such interfaces in a wide range of applications, from the asymptotics of recation-diffusion equations and systems and hydrodynamic limits of particles systems in phase transitions to turbulent combustion.

Keywords

Viscosity Solution Normal Velocity Gibbs Measure Front Propagation Signed Distance Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AC]
    S. M. Allen and J. W. Cahn, A macroscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metallica 27 (1979), 1085–1095.CrossRefGoogle Scholar
  2. [AGLM]
    L. Alvarez, F. Guichard, P.-L. Lions, and J.-M. Morel, Axioms and fundamental equations of image processing, Arch. Rational Mech. Anal. 123 (1992), 199–257.MathSciNetCrossRefGoogle Scholar
  3. [ACI]
    S. Angenent, D. L. Chopp, and T. Ilmanen, A computed example of nonuniqueness of mean curvature flow is ℝ3, Comm. Partial Differential Equations 20 (1995), 1937–1958.MathSciNetCrossRefGoogle Scholar
  4. [AIV]
    S. Angenent, T. Ilmanen, and J. L. Velazquez, Nonuniqueness in geometric heat flows, preprint.Google Scholar
  5. [AW]
    D. G. Aronson and H. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. Math. 30 (1978), 33–76.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [Ba]
    G. Barles, Remark on a flame propagation model, Rapport INRIA 464 (1985).Google Scholar
  7. [BBS]
    G. Barles, L. Bronsard, and P. E. Souganidis, Front propagation for reaction-diffusion equations of bistable type, Anal. Nonlin. 9 (1992), 479–506.MathSciNetzbMATHGoogle Scholar
  8. [BES]
    G. Barles, L. C. Evans, and P. E. Souganidis, Wavefront propagation for reaction-diffusion systems of PDE, Duke Math. J. 61 (1990), 835–858.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [BSS]
    G. Barles, H. M. Soner, and P. E. Souganidis, Front propagation and phase field theory, SIAM J. Control Optim. 31 (1993), 439–469.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [BS1]
    G. Barles and P. E. Souganidis, Convergence of approximation schemes for full nonlinear equations, Asymptotic Anal. 4 (1989), 271–283.MathSciNetGoogle Scholar
  11. [BS2]
    G. Barles and P. E. Souganidis, A new approach to front propagation: Theory and applications, Arch. Rational Mech. Anal. 141 (1998), 237–296.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [BS3]
    G. Barles and P. E. Souganidis, A remark on the asymptotic behavior of the solution of the KPP equation, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), 679–684.MathSciNetzbMATHGoogle Scholar
  13. [BJ]
    E. N. Barron and R. Jensen, Semicontinuous viscosity solutions for Hamilton-Jacobi Equations with convex Hamiltonians, to appear in Comm. Partial Differential Equations.Google Scholar
  14. [BFRW]
    P. Bates, P. Fife, X. Ren, and X. Wang, Traveling waves in a convolution model for phase transitions, preprint.Google Scholar
  15. [BP1]
    G. Bellettini and M. Paolini, Two examples of fattening for the mean curvature flow with a driving force, Math. Appl. 5 (1994), 229–236.MathSciNetzbMATHGoogle Scholar
  16. [BP2]
    G. Bellettini and M. Paolini, Some results on minimal barriers in the sense of DeGiorgi to driven motion by mean curvature, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5) 19 (1995), 43–67.MathSciNetzbMATHGoogle Scholar
  17. [BP3]
    G. Bellettini and M. Paolini, Anisotropic motion by mean curvature in the context of Finsler geometry, Hokkaido Math. J. 25 (1996), 537–566.MathSciNetzbMATHGoogle Scholar
  18. [Bo]
    L. Bonaventura, Motion by curvature in an interacting spin system, preprint.Google Scholar
  19. [Br]
    K. A. Brakke, The Motion of a Surface by Its Mean Curvature, Princeton University Press, Princeton, NJ, 1978.zbMATHGoogle Scholar
  20. [BrK]
    L. Bronsard and R. Kohn, Motion by mean curvature as the singular limit of Ginzburg-Landau model, J. Differential Equations 90 (1991), 211–237.MathSciNetzbMATHCrossRefGoogle Scholar
  21. [Cal]
    G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Rational Mech. 92 (1986), 205–245.MathSciNetzbMATHGoogle Scholar
  22. [Ca2]
    G. Caginalp, Mathematical models of phase boundaries, in: Material Instabilities in Continuum Mechanics and Related Mathematical Problems (J. Ball, ed.), Clarendon Press, Oxford, 1988, 35–52.Google Scholar
  23. [Ch]
    X.-Y. Chen, Generation and propagation of the interface for reaction-diffusion equation, J. Differential Equations 96 (1992), 116–141.MathSciNetzbMATHCrossRefGoogle Scholar
  24. [CGG]
    Y.-G. Chen, Y. Giga, and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differential Geom. 33 (1991), 749–786.MathSciNetzbMATHGoogle Scholar
  25. [Cr]
    M. G. Crandall, Viscosity solutions: a primer, in: Viscosity Solutions and Applications (I. Capuzzo Dolcetta and P.-L. Lions, eds.), Lecture Notes in Math. 1660, Springer-Verlag, Berlin, 1997, 1–43.CrossRefGoogle Scholar
  26. [CIL]
    M. G. Crandall, H. Ishii, and P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. 27 (1992), 1–67.MathSciNetzbMATHCrossRefGoogle Scholar
  27. [CLS]
    M. G. Crandall, P.-L. Lions, and P. E. Souganidis, Universal bounds and maximal solutions for certain evolution equations, Arch. Rational Mech. Anal. 105 (1989), 163–190.MathSciNetzbMATHCrossRefGoogle Scholar
  28. [D]
    E. DeGiorgi, Some conjectures on flow by mean curvature, Proc. Capri Workshop 1990 (Benevento, Bruno, and Sbardone, eds.).Google Scholar
  29. [DFL]
    A. DeMasi, P. Ferrari, and J. Lebowitz, Reaction-diffusion equations for interacting particle systems, J. Statist. Phys. 44 (1986), 589–644.MathSciNetzbMATHCrossRefGoogle Scholar
  30. [D0PT1]
    A. DeMasi, E. Orlandi, E. Presutti, and L. Triolo, Glauber evolution with Kač potentials: I. Mesoscopic and macroscopic limits, interface dynamics, Nonlinearity 7 (1994), 633–696.MathSciNetzbMATHCrossRefGoogle Scholar
  31. [DOPT2]
    A. DeMasi, E. Orlandi, E. Presutti, and L. Triolo, Motion by curvature by scaling non-local evolution equations, J. Statist Phys. 73 (1993), 543–570.MathSciNetzbMATHCrossRefGoogle Scholar
  32. [DOPT3]
    A. DeMasi, E. Orlandi, E. Presutti, and L. Triolo, Stability of the interface in a model of phase separation, Proc. Royal Soc. Edinburgh Sect. A 124 (1994), 1013–1022.zbMATHCrossRefGoogle Scholar
  33. [DP]
    A. De Masi and E. Presutti, Mathematical Methods for Hydrodynamic Limits,Lecture Notes in Math. 1501, Springer-Verlag, Berlin, 1991.zbMATHGoogle Scholar
  34. [DS]
    P. DeMottoni and M. Schatzman, Development of interfaces in ℝN, Proc. Royal Soc. Edinburgh Sect. A 116 (1990), 207–220.zbMATHCrossRefGoogle Scholar
  35. [EMS1]
    P. F. Embid, A. Majda, and P. E. Souganidis, Effective geometric front dynamics for premixed turbulent combustion with separated velocity scales, Combustion Sci. Techn. 103 (1994), 85–115.CrossRefGoogle Scholar
  36. [EMS2]
    P. F. Embid, A. Majda and P. E. Souganidis, Comparison of turbulent flame speeds from complete averaging and the G-equation, Phys. Fluids 7 (1995), 2052–2060.MathSciNetzbMATHCrossRefGoogle Scholar
  37. [EMS3]
    P. F. Embid, A. Majda, and P. E. Souganidis, Examples and counterexamples for Huygens Principle in premixed combustion, Combustion Sci. Techn. 120 (1996), 273–303.CrossRefGoogle Scholar
  38. [El]
    L. C. Evans, The perturbed test function method for viscosity solutions of nonlinear PDE, Proc. Royal Soc. Edinburgh Sect. A 111 (1989), 359–375.zbMATHCrossRefGoogle Scholar
  39. [E2]
    L. C. Evans, Regularity for fully nonlinear elliptic equations and motion by mean curvature, in: Viscosity Solutions and Applications (I. Capuzzo Dolcetta and P.-L. Lions, eds.), Lecture Notes in Math. 1660, Springer-Verlag, Berlin, 1997, 98–133.CrossRefGoogle Scholar
  40. [ESS]
    L. C. Evans, H. M. Soner, and P. E. Souganidis, Phase transitions and generalized motion by mean curvature, Comm. Pure Appl. Math. 45 (1992), 1097–1123.MathSciNetzbMATHCrossRefGoogle Scholar
  41. [ESol]
    L. C. Evans and P. E. Souganidis, A PDE approach to geometric optics for certain reaction-diffusion equations, Indiana Univ. Math. J. 38 (1989), 141–172.MathSciNetzbMATHCrossRefGoogle Scholar
  42. [ESo2]
    L. C. Evans and P. E. Souganidis, A PDE approach to certain large deviation problems for systems of parabolic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (Suppl.) (1994), 229–258.MathSciNetGoogle Scholar
  43. [ESp]
    L. C. Evans and J. Spruck, Motion of level sets by mean curvature I, J. Differential Geom. 33 (1991), 635–681.MathSciNetzbMATHGoogle Scholar
  44. [Fi]
    P. C. Fife, Nonlinear diffusive waves, CMBS Conf., Utah 1987, CMBS Conf. Series (1989).Google Scholar
  45. [FM]
    P. C. Fife and B. McLeod, The approach of solutions of nonlinear diffusion equations to travelling solutions, Arch. Rational Mech. Anal 65 (1977), 335–361.MathSciNetzbMATHCrossRefGoogle Scholar
  46. [Fr1]
    M. Freidlin, Functional Integration and Partial Differential Equations, Ann. of Math. Stud. 109, Princeton University Press, Princeton, NJ, 1985.zbMATHGoogle Scholar
  47. [Fr2]
    M. Freidlin, Limit theorems for large deviations of reaction-diffusion equations,Ann. Probab. 13 (1985), 639–675.MathSciNetzbMATHCrossRefGoogle Scholar
  48. [FL]
    M. Freidlin and Y. T. Lee, Wave front propagation for a class of space non-homogeneous reaction-diffusion systems, preprint.Google Scholar
  49. [Ga]
    J. Gärtner, Bistable reaction-diffusion equations and excitable media, Math.Nachr. 112 (1983), 125–152.MathSciNetzbMATHCrossRefGoogle Scholar
  50. [GS]
    Y. Giga and M.-H. Sato, Generalized interface evolution with Neumann boundary condition, Proc. Japan Acad. Ser. A Math. Sci. 67 (1991), 263–266.MathSciNetzbMATHCrossRefGoogle Scholar
  51. [GT]
    D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Grundlehren Math. Wiss. 224, Springer-Verlag, New York, 1983.zbMATHCrossRefGoogle Scholar
  52. [Go]
    S. Goto, Generalized motion of hypersurfaces whose growth speed depends super-linearly on curvature tensor, J. Differential Integral Equations 7 (1994), 323–343.MathSciNetzbMATHGoogle Scholar
  53. [G]
    W. Grabowski, Cumulus entrainment, fine scale mixing, and bouyancy reversal,Quart. J. Roy. Meteorol. Soc. 119 (1993), 935–956.CrossRefGoogle Scholar
  54. [GSm]
    W. Grabowski and P. Smolarkiewicz, Two-time level semi-Lagrangian modeling of precipitating clouds, Monthly Weather Rev. 124 (1996), 487–497.CrossRefGoogle Scholar
  55. [Gu]
    M. E. Gurtin, Multiphase thermodynamics with interfacial structure. 1. Heat conduction and the capillary balance law, Arch. Rational Mech. Anal. 104 (1988), 185–221.MathSciNetCrossRefGoogle Scholar
  56. [GSS]
    M. E. Gurtin, H. M. Soner, and P. E. Souganidis, Anisotropic motion of an interface relaxed by the formation of infinitesimal wrinkles, J. Differential Equations 119 (1995), 54–108.MathSciNetzbMATHCrossRefGoogle Scholar
  57. [Ill]
    T. Ilmanen, The level-set flow on a manifold, in: Differential Geometry: Partial Differential Equations on Manifolds (R. Greene and S.-T. Yau, eds.), Proc. Sympos. Pure Math. 54, Amer. Math. Soc, Providence, RI, 1993, 193–204.Google Scholar
  58. [112]
    T. Ilmanen, Convergence of the Allen-Cahn equation to Brakke’s motion by mean curvature, J. Differential Geom. 38 (1993), 417–461.MathSciNetzbMATHGoogle Scholar
  59. [Isl]
    H. Ishii, Hamilton-Jacobi equations with discontinuous Hamiltonians on arbitrary open sets, Bull. Fac. Sci. Engrg. Chuo Univ. Ser. I Math. 26 (1985), 5–24.Google Scholar
  60. [Is2]
    H. Ishii, Parabolic pde with discontinuities and evolution of interfaces, Adv. Differential Equations 1 (1996), 51–72.0MathSciNetzbMATHGoogle Scholar
  61. [IPS]
    H. Ishii, G. Pires, and P. E. Souganidis, Threshold dynamics type approximation schemes for propagating fronts, J. Math. Soc. Japan 51 (1999), 267–308.MathSciNetzbMATHCrossRefGoogle Scholar
  62. [IS]
    H. Ishii and P. E. Souganidis, Generalized motion of noncompact hypersurfaces with velocity having arbitrary growth on the curvature tensor, Tohoku Math. J. 47 (1995), 227–250.MathSciNetzbMATHCrossRefGoogle Scholar
  63. [JLS]
    R. Jensen, P.-L. Lions, and P. E. Souganidis, A uniqueness result for viscosity solutions of second-order fully nonlinear pde’s, Proc. Amer. Math. Soc. 102 (1988), 975–978.MathSciNetzbMATHCrossRefGoogle Scholar
  64. [J]
    R. Jerrard, Fully nonlinear phase transitions and generalized mean curvature motions,Comm. Partial Differential Equations 20 (1995), 223–265.MathSciNetCrossRefGoogle Scholar
  65. [KKR]
    M. Katsoulakis, G. Kossioris, and F. Reitich, Generalized motion by mean curvature with Neumann conditions and the Allen-Cahn model for phase transitions, to appear in J. Geom. Anal..Google Scholar
  66. [KS1]
    M. Katsoulakis and P. E. Souganidis, Interacting particle systems and generalized mean curvature evolution, Arch. Rational Mech. Anal 127 (1994), 133–157.MathSciNetzbMATHCrossRefGoogle Scholar
  67. [KS2]
    M. Katsoulakis and P. E. Souganidis, Generalized motion by mean curvature as a macroscopic limit of stochastic Ising models with long range interactions and Glauber dynamics, Comm. Math. Phys. 169 (1995), 61–97.MathSciNetzbMATHCrossRefGoogle Scholar
  68. [KS3]
    M. Katsoulakis and P. E. Souganidis, Stochastic Ising models and anisotropic front propagation, to appear in J. Statist. Phys..Google Scholar
  69. [K]
    I. C. Kim, Singular limits of chemotaxis — growth model, Nonlinear Anal. 46 (2001), 817–834.MathSciNetzbMATHCrossRefGoogle Scholar
  70. [LW]
    A. Linan and F. Williams, Fundamental Aspects of Combustion, Oxford University Press, 1993, Chapters 3 and 5.Google Scholar
  71. [LP]
    J. Lebowitz and O. Penrose, Rigorous treatment of the Van der Waals Maxwell theory of the liquid vapour transition, J. Math. Phys. 98 (1966), 98–113.MathSciNetCrossRefGoogle Scholar
  72. [Lig]
    T. Liggett, Interacting Particle Systems, Grundlehren Math. Wiss. 276, Springer-Verlag,New York, 1985.zbMATHCrossRefGoogle Scholar
  73. [LPV]
    P.-L. Lions, G. Papanicolaou, and S. R. S. Varadhan, Homogenization of the Hamilton-Jacobi equations, preprint.Google Scholar
  74. [LSI]
    P.-L. Lions and P. E. Souganidis, Viscosity solutions of fully nonlinear stochastic partial differential equations, C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), 1085–1092.MathSciNetzbMATHCrossRefGoogle Scholar
  75. [LS2]
    P.-L. Lions and P. E. Souganidis, Fully nonlinear stochastic partial differential equations: Nonsmooth equations and applications, C. R. Acad. Sci. Paris Sér. I Math. 327 (1998), 735–741.MathSciNetzbMATHCrossRefGoogle Scholar
  76. [LS3]
    P.-L. Lions and P. E. Souganidis, Uniqueness of weak solutions for fully nonlinear stochastic partial differential equations, C. R. Acad. Sci. Paris Sér. I Math. 331 (2000), 783–790.MathSciNetzbMATHCrossRefGoogle Scholar
  77. [LS4]
    P.-L. Lions and P. E. Souganidis, Fully nonlinear stochastic partial differential equations with semilinear stochastic dependence, C. R. Acad. Sci. Paris Sér. I Math. 331 (2000), 617–624.MathSciNetzbMATHCrossRefGoogle Scholar
  78. [MSI]
    A. Majda and P. E. Souganidis, Large scale front dynamics for turbulent reaction-diffusion equations with separated velocity scales, Nonlinearity 7 (1994), 1–30.MathSciNetzbMATHCrossRefGoogle Scholar
  79. [MS2]
    A. Majda and P. E. Souganidis, Bounds on enhanced turbulent flame speeds for combustion with fractal velocity fields, J. Statist. Phys. 83 (1996), 933–954.CrossRefGoogle Scholar
  80. [MS3]
    A. Majda and P. E. Souganidis, Flame fronts in a turbulent combustion model with fractal velocity fields, Comm. Pure Appl. Math. 51 (1998), 1337–1348.MathSciNetzbMATHCrossRefGoogle Scholar
  81. [MS4]
    A. Majda and P. E. Souganidis, The effect of turbulence on mixing in prototype reaction diffusion systems, Comm. Pure Appl. Math. 53 (2000), 1284–1304.MathSciNetzbMATHCrossRefGoogle Scholar
  82. [NPV]
    R. H. Nochetto, M. Paolini, and C. Verdi, Optimal interface error estimates for the mean curvature flow, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 21 (1994), 193–212.MathSciNetzbMATHGoogle Scholar
  83. [OJK]
    T. Ohta, D. Jasnow, and K. Kawasaki, Universal scaling in the motion of random intervaces, Phys. Rev. Lett. 49 (1982), 1223–1226.CrossRefGoogle Scholar
  84. [OsS]
    S. Osher and J. Sethian, Fronts moving with curvature dependent speed: Algorithms based on Hamilton-Jacobi equations, J. Comput. Phys. 79 (1988), 12–49.MathSciNetzbMATHCrossRefGoogle Scholar
  85. [RSK]
    J. Rubinstein, P. Sternberg, and J. B. Keller, Fast reaction, slow diffusion and curve shortening, SIAM J. Appl. Math. 49 (1989), 116–133.MathSciNetzbMATHCrossRefGoogle Scholar
  86. [Sonl]
    H. M. Soner, Motion of a set by the curvature of its boundary, J. Differential Equations 101 (1993), 313–372.MathSciNetzbMATHCrossRefGoogle Scholar
  87. [Son2]
    H. M. Soner, Ginzburg-Landau equation and motion by mean curvature, I: Convergence, J. Geom. Anal. 7 (1997), 437–475, II to appear ibid.MathSciNetzbMATHCrossRefGoogle Scholar
  88. [SonS]
    H. M. Soner and P. E. Souganidis, Uniqueness and singularities of rotationally symmetric domains moving by mean curvature, Comm. Partial Differential Equations 18 (1993), 859–894.MathSciNetzbMATHCrossRefGoogle Scholar
  89. [Sor]
    P. Soravia, Generalized motion of a front along its normal direction: A differential games approach, Nonlinear Anal. 22 (1994), 1242–1262.MathSciNetCrossRefGoogle Scholar
  90. [SorS]
    P. Soravia and P. E. Souganidis, Phase field theory for FitzHugh-Nagumo type systems, SIAM J. Math. Anal. 42 (1996), 1341–1359.MathSciNetCrossRefGoogle Scholar
  91. [Soul]
    P. E. Souganidis, Front propagation: theory and application, in: Viscosity Solutions and Applications (I. Capuzzo Dolcetta and P.-L. Lions, eds.), Lecture Notes in Math. 1660, Springer, Berlin, 1997, 186–242.CrossRefGoogle Scholar
  92. [Sou2]
    P. E. Souganidis, Stochastic Homogenization for Hamilton-Jacobi equations and applications, Asymptotic Anal 20 (1999), 1–11.MathSciNetzbMATHGoogle Scholar
  93. [Spl]
    H. Spohn, Large Scale Dynamics of Interacting Particles, Springer-Verlag, New York, 1991.zbMATHCrossRefGoogle Scholar
  94. [Sp2]
    H. Spohn, Interface motion in models with stochastic dynamics, J. Statist Phys.71 (1993), 1081–1132.MathSciNetzbMATHCrossRefGoogle Scholar
  95. [W]
    F. Williams, Combustion Theory, 2nd ed., Addison-Wesley.Google Scholar
  96. [X]
    J. X. Xin, Existence and nonexistence of traveling waves and reaction-diffusion front propagation in periodic media, J. Statist Phys. 73 (1993), 893–926.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • Panagiotis E. Souganidis
    • 1
  1. 1.Department of MathematicsThe University of Texas at AustinAustinUSA

Personalised recommendations