Skip to main content

Recent developments in the theory of front propagation and its applications

  • Chapter

Part of the book series: NATO Science Series ((NAII,volume 75))

Abstract

We describe a new theory for studying the geometric motion of interfaces past the first times singularities develop. We also show how this theory allows one to justify and study the development of such interfaces in a wide range of applications, from the asymptotics of recation-diffusion equations and systems and hydrodynamic limits of particles systems in phase transitions to turbulent combustion.

Partially supported by the NSF.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. M. Allen and J. W. Cahn, A macroscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metallica 27 (1979), 1085–1095.

    Article  Google Scholar 

  2. L. Alvarez, F. Guichard, P.-L. Lions, and J.-M. Morel, Axioms and fundamental equations of image processing, Arch. Rational Mech. Anal. 123 (1992), 199–257.

    Article  MathSciNet  Google Scholar 

  3. S. Angenent, D. L. Chopp, and T. Ilmanen, A computed example of nonuniqueness of mean curvature flow is ℝ3, Comm. Partial Differential Equations 20 (1995), 1937–1958.

    Article  MathSciNet  Google Scholar 

  4. S. Angenent, T. Ilmanen, and J. L. Velazquez, Nonuniqueness in geometric heat flows, preprint.

    Google Scholar 

  5. D. G. Aronson and H. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. Math. 30 (1978), 33–76.

    Article  MathSciNet  MATH  Google Scholar 

  6. G. Barles, Remark on a flame propagation model, Rapport INRIA 464 (1985).

    Google Scholar 

  7. G. Barles, L. Bronsard, and P. E. Souganidis, Front propagation for reaction-diffusion equations of bistable type, Anal. Nonlin. 9 (1992), 479–506.

    MathSciNet  MATH  Google Scholar 

  8. G. Barles, L. C. Evans, and P. E. Souganidis, Wavefront propagation for reaction-diffusion systems of PDE, Duke Math. J. 61 (1990), 835–858.

    Article  MathSciNet  MATH  Google Scholar 

  9. G. Barles, H. M. Soner, and P. E. Souganidis, Front propagation and phase field theory, SIAM J. Control Optim. 31 (1993), 439–469.

    Article  MathSciNet  MATH  Google Scholar 

  10. G. Barles and P. E. Souganidis, Convergence of approximation schemes for full nonlinear equations, Asymptotic Anal. 4 (1989), 271–283.

    MathSciNet  Google Scholar 

  11. G. Barles and P. E. Souganidis, A new approach to front propagation: Theory and applications, Arch. Rational Mech. Anal. 141 (1998), 237–296.

    Article  MathSciNet  MATH  Google Scholar 

  12. G. Barles and P. E. Souganidis, A remark on the asymptotic behavior of the solution of the KPP equation, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), 679–684.

    MathSciNet  MATH  Google Scholar 

  13. E. N. Barron and R. Jensen, Semicontinuous viscosity solutions for Hamilton-Jacobi Equations with convex Hamiltonians, to appear in Comm. Partial Differential Equations.

    Google Scholar 

  14. P. Bates, P. Fife, X. Ren, and X. Wang, Traveling waves in a convolution model for phase transitions, preprint.

    Google Scholar 

  15. G. Bellettini and M. Paolini, Two examples of fattening for the mean curvature flow with a driving force, Math. Appl. 5 (1994), 229–236.

    MathSciNet  MATH  Google Scholar 

  16. G. Bellettini and M. Paolini, Some results on minimal barriers in the sense of DeGiorgi to driven motion by mean curvature, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5) 19 (1995), 43–67.

    MathSciNet  MATH  Google Scholar 

  17. G. Bellettini and M. Paolini, Anisotropic motion by mean curvature in the context of Finsler geometry, Hokkaido Math. J. 25 (1996), 537–566.

    MathSciNet  MATH  Google Scholar 

  18. L. Bonaventura, Motion by curvature in an interacting spin system, preprint.

    Google Scholar 

  19. K. A. Brakke, The Motion of a Surface by Its Mean Curvature, Princeton University Press, Princeton, NJ, 1978.

    MATH  Google Scholar 

  20. L. Bronsard and R. Kohn, Motion by mean curvature as the singular limit of Ginzburg-Landau model, J. Differential Equations 90 (1991), 211–237.

    Article  MathSciNet  MATH  Google Scholar 

  21. G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Rational Mech. 92 (1986), 205–245.

    MathSciNet  MATH  Google Scholar 

  22. G. Caginalp, Mathematical models of phase boundaries, in: Material Instabilities in Continuum Mechanics and Related Mathematical Problems (J. Ball, ed.), Clarendon Press, Oxford, 1988, 35–52.

    Google Scholar 

  23. X.-Y. Chen, Generation and propagation of the interface for reaction-diffusion equation, J. Differential Equations 96 (1992), 116–141.

    Article  MathSciNet  MATH  Google Scholar 

  24. Y.-G. Chen, Y. Giga, and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differential Geom. 33 (1991), 749–786.

    MathSciNet  MATH  Google Scholar 

  25. M. G. Crandall, Viscosity solutions: a primer, in: Viscosity Solutions and Applications (I. Capuzzo Dolcetta and P.-L. Lions, eds.), Lecture Notes in Math. 1660, Springer-Verlag, Berlin, 1997, 1–43.

    Chapter  Google Scholar 

  26. M. G. Crandall, H. Ishii, and P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. 27 (1992), 1–67.

    Article  MathSciNet  MATH  Google Scholar 

  27. M. G. Crandall, P.-L. Lions, and P. E. Souganidis, Universal bounds and maximal solutions for certain evolution equations, Arch. Rational Mech. Anal. 105 (1989), 163–190.

    Article  MathSciNet  MATH  Google Scholar 

  28. E. DeGiorgi, Some conjectures on flow by mean curvature, Proc. Capri Workshop 1990 (Benevento, Bruno, and Sbardone, eds.).

    Google Scholar 

  29. A. DeMasi, P. Ferrari, and J. Lebowitz, Reaction-diffusion equations for interacting particle systems, J. Statist. Phys. 44 (1986), 589–644.

    Article  MathSciNet  MATH  Google Scholar 

  30. A. DeMasi, E. Orlandi, E. Presutti, and L. Triolo, Glauber evolution with Kač potentials: I. Mesoscopic and macroscopic limits, interface dynamics, Nonlinearity 7 (1994), 633–696.

    Article  MathSciNet  MATH  Google Scholar 

  31. A. DeMasi, E. Orlandi, E. Presutti, and L. Triolo, Motion by curvature by scaling non-local evolution equations, J. Statist Phys. 73 (1993), 543–570.

    Article  MathSciNet  MATH  Google Scholar 

  32. A. DeMasi, E. Orlandi, E. Presutti, and L. Triolo, Stability of the interface in a model of phase separation, Proc. Royal Soc. Edinburgh Sect. A 124 (1994), 1013–1022.

    Article  MATH  Google Scholar 

  33. A. De Masi and E. Presutti, Mathematical Methods for Hydrodynamic Limits,Lecture Notes in Math. 1501, Springer-Verlag, Berlin, 1991.

    MATH  Google Scholar 

  34. P. DeMottoni and M. Schatzman, Development of interfaces in ℝN, Proc. Royal Soc. Edinburgh Sect. A 116 (1990), 207–220.

    Article  MATH  Google Scholar 

  35. P. F. Embid, A. Majda, and P. E. Souganidis, Effective geometric front dynamics for premixed turbulent combustion with separated velocity scales, Combustion Sci. Techn. 103 (1994), 85–115.

    Article  Google Scholar 

  36. P. F. Embid, A. Majda and P. E. Souganidis, Comparison of turbulent flame speeds from complete averaging and the G-equation, Phys. Fluids 7 (1995), 2052–2060.

    Article  MathSciNet  MATH  Google Scholar 

  37. P. F. Embid, A. Majda, and P. E. Souganidis, Examples and counterexamples for Huygens Principle in premixed combustion, Combustion Sci. Techn. 120 (1996), 273–303.

    Article  Google Scholar 

  38. L. C. Evans, The perturbed test function method for viscosity solutions of nonlinear PDE, Proc. Royal Soc. Edinburgh Sect. A 111 (1989), 359–375.

    Article  MATH  Google Scholar 

  39. L. C. Evans, Regularity for fully nonlinear elliptic equations and motion by mean curvature, in: Viscosity Solutions and Applications (I. Capuzzo Dolcetta and P.-L. Lions, eds.), Lecture Notes in Math. 1660, Springer-Verlag, Berlin, 1997, 98–133.

    Chapter  Google Scholar 

  40. L. C. Evans, H. M. Soner, and P. E. Souganidis, Phase transitions and generalized motion by mean curvature, Comm. Pure Appl. Math. 45 (1992), 1097–1123.

    Article  MathSciNet  MATH  Google Scholar 

  41. L. C. Evans and P. E. Souganidis, A PDE approach to geometric optics for certain reaction-diffusion equations, Indiana Univ. Math. J. 38 (1989), 141–172.

    Article  MathSciNet  MATH  Google Scholar 

  42. L. C. Evans and P. E. Souganidis, A PDE approach to certain large deviation problems for systems of parabolic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (Suppl.) (1994), 229–258.

    MathSciNet  Google Scholar 

  43. L. C. Evans and J. Spruck, Motion of level sets by mean curvature I, J. Differential Geom. 33 (1991), 635–681.

    MathSciNet  MATH  Google Scholar 

  44. P. C. Fife, Nonlinear diffusive waves, CMBS Conf., Utah 1987, CMBS Conf. Series (1989).

    Google Scholar 

  45. P. C. Fife and B. McLeod, The approach of solutions of nonlinear diffusion equations to travelling solutions, Arch. Rational Mech. Anal 65 (1977), 335–361.

    Article  MathSciNet  MATH  Google Scholar 

  46. M. Freidlin, Functional Integration and Partial Differential Equations, Ann. of Math. Stud. 109, Princeton University Press, Princeton, NJ, 1985.

    MATH  Google Scholar 

  47. M. Freidlin, Limit theorems for large deviations of reaction-diffusion equations,Ann. Probab. 13 (1985), 639–675.

    Article  MathSciNet  MATH  Google Scholar 

  48. M. Freidlin and Y. T. Lee, Wave front propagation for a class of space non-homogeneous reaction-diffusion systems, preprint.

    Google Scholar 

  49. J. Gärtner, Bistable reaction-diffusion equations and excitable media, Math.Nachr. 112 (1983), 125–152.

    Article  MathSciNet  MATH  Google Scholar 

  50. Y. Giga and M.-H. Sato, Generalized interface evolution with Neumann boundary condition, Proc. Japan Acad. Ser. A Math. Sci. 67 (1991), 263–266.

    Article  MathSciNet  MATH  Google Scholar 

  51. D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Grundlehren Math. Wiss. 224, Springer-Verlag, New York, 1983.

    Book  MATH  Google Scholar 

  52. S. Goto, Generalized motion of hypersurfaces whose growth speed depends super-linearly on curvature tensor, J. Differential Integral Equations 7 (1994), 323–343.

    MathSciNet  MATH  Google Scholar 

  53. W. Grabowski, Cumulus entrainment, fine scale mixing, and bouyancy reversal,Quart. J. Roy. Meteorol. Soc. 119 (1993), 935–956.

    Article  Google Scholar 

  54. W. Grabowski and P. Smolarkiewicz, Two-time level semi-Lagrangian modeling of precipitating clouds, Monthly Weather Rev. 124 (1996), 487–497.

    Article  Google Scholar 

  55. M. E. Gurtin, Multiphase thermodynamics with interfacial structure. 1. Heat conduction and the capillary balance law, Arch. Rational Mech. Anal. 104 (1988), 185–221.

    Article  MathSciNet  Google Scholar 

  56. M. E. Gurtin, H. M. Soner, and P. E. Souganidis, Anisotropic motion of an interface relaxed by the formation of infinitesimal wrinkles, J. Differential Equations 119 (1995), 54–108.

    Article  MathSciNet  MATH  Google Scholar 

  57. T. Ilmanen, The level-set flow on a manifold, in: Differential Geometry: Partial Differential Equations on Manifolds (R. Greene and S.-T. Yau, eds.), Proc. Sympos. Pure Math. 54, Amer. Math. Soc, Providence, RI, 1993, 193–204.

    Google Scholar 

  58. T. Ilmanen, Convergence of the Allen-Cahn equation to Brakke’s motion by mean curvature, J. Differential Geom. 38 (1993), 417–461.

    MathSciNet  MATH  Google Scholar 

  59. H. Ishii, Hamilton-Jacobi equations with discontinuous Hamiltonians on arbitrary open sets, Bull. Fac. Sci. Engrg. Chuo Univ. Ser. I Math. 26 (1985), 5–24.

    Google Scholar 

  60. H. Ishii, Parabolic pde with discontinuities and evolution of interfaces, Adv. Differential Equations 1 (1996), 51–72.0

    MathSciNet  MATH  Google Scholar 

  61. H. Ishii, G. Pires, and P. E. Souganidis, Threshold dynamics type approximation schemes for propagating fronts, J. Math. Soc. Japan 51 (1999), 267–308.

    Article  MathSciNet  MATH  Google Scholar 

  62. H. Ishii and P. E. Souganidis, Generalized motion of noncompact hypersurfaces with velocity having arbitrary growth on the curvature tensor, Tohoku Math. J. 47 (1995), 227–250.

    Article  MathSciNet  MATH  Google Scholar 

  63. R. Jensen, P.-L. Lions, and P. E. Souganidis, A uniqueness result for viscosity solutions of second-order fully nonlinear pde’s, Proc. Amer. Math. Soc. 102 (1988), 975–978.

    Article  MathSciNet  MATH  Google Scholar 

  64. R. Jerrard, Fully nonlinear phase transitions and generalized mean curvature motions,Comm. Partial Differential Equations 20 (1995), 223–265.

    Article  MathSciNet  Google Scholar 

  65. M. Katsoulakis, G. Kossioris, and F. Reitich, Generalized motion by mean curvature with Neumann conditions and the Allen-Cahn model for phase transitions, to appear in J. Geom. Anal..

    Google Scholar 

  66. M. Katsoulakis and P. E. Souganidis, Interacting particle systems and generalized mean curvature evolution, Arch. Rational Mech. Anal 127 (1994), 133–157.

    Article  MathSciNet  MATH  Google Scholar 

  67. M. Katsoulakis and P. E. Souganidis, Generalized motion by mean curvature as a macroscopic limit of stochastic Ising models with long range interactions and Glauber dynamics, Comm. Math. Phys. 169 (1995), 61–97.

    Article  MathSciNet  MATH  Google Scholar 

  68. M. Katsoulakis and P. E. Souganidis, Stochastic Ising models and anisotropic front propagation, to appear in J. Statist. Phys..

    Google Scholar 

  69. I. C. Kim, Singular limits of chemotaxis — growth model, Nonlinear Anal. 46 (2001), 817–834.

    Article  MathSciNet  MATH  Google Scholar 

  70. A. Linan and F. Williams, Fundamental Aspects of Combustion, Oxford University Press, 1993, Chapters 3 and 5.

    Google Scholar 

  71. J. Lebowitz and O. Penrose, Rigorous treatment of the Van der Waals Maxwell theory of the liquid vapour transition, J. Math. Phys. 98 (1966), 98–113.

    Article  MathSciNet  Google Scholar 

  72. T. Liggett, Interacting Particle Systems, Grundlehren Math. Wiss. 276, Springer-Verlag,New York, 1985.

    Book  MATH  Google Scholar 

  73. P.-L. Lions, G. Papanicolaou, and S. R. S. Varadhan, Homogenization of the Hamilton-Jacobi equations, preprint.

    Google Scholar 

  74. P.-L. Lions and P. E. Souganidis, Viscosity solutions of fully nonlinear stochastic partial differential equations, C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), 1085–1092.

    Article  MathSciNet  MATH  Google Scholar 

  75. P.-L. Lions and P. E. Souganidis, Fully nonlinear stochastic partial differential equations: Nonsmooth equations and applications, C. R. Acad. Sci. Paris Sér. I Math. 327 (1998), 735–741.

    Article  MathSciNet  MATH  Google Scholar 

  76. P.-L. Lions and P. E. Souganidis, Uniqueness of weak solutions for fully nonlinear stochastic partial differential equations, C. R. Acad. Sci. Paris Sér. I Math. 331 (2000), 783–790.

    Article  MathSciNet  MATH  Google Scholar 

  77. P.-L. Lions and P. E. Souganidis, Fully nonlinear stochastic partial differential equations with semilinear stochastic dependence, C. R. Acad. Sci. Paris Sér. I Math. 331 (2000), 617–624.

    Article  MathSciNet  MATH  Google Scholar 

  78. A. Majda and P. E. Souganidis, Large scale front dynamics for turbulent reaction-diffusion equations with separated velocity scales, Nonlinearity 7 (1994), 1–30.

    Article  MathSciNet  MATH  Google Scholar 

  79. A. Majda and P. E. Souganidis, Bounds on enhanced turbulent flame speeds for combustion with fractal velocity fields, J. Statist. Phys. 83 (1996), 933–954.

    Article  Google Scholar 

  80. A. Majda and P. E. Souganidis, Flame fronts in a turbulent combustion model with fractal velocity fields, Comm. Pure Appl. Math. 51 (1998), 1337–1348.

    Article  MathSciNet  MATH  Google Scholar 

  81. A. Majda and P. E. Souganidis, The effect of turbulence on mixing in prototype reaction diffusion systems, Comm. Pure Appl. Math. 53 (2000), 1284–1304.

    Article  MathSciNet  MATH  Google Scholar 

  82. R. H. Nochetto, M. Paolini, and C. Verdi, Optimal interface error estimates for the mean curvature flow, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 21 (1994), 193–212.

    MathSciNet  MATH  Google Scholar 

  83. T. Ohta, D. Jasnow, and K. Kawasaki, Universal scaling in the motion of random intervaces, Phys. Rev. Lett. 49 (1982), 1223–1226.

    Article  Google Scholar 

  84. S. Osher and J. Sethian, Fronts moving with curvature dependent speed: Algorithms based on Hamilton-Jacobi equations, J. Comput. Phys. 79 (1988), 12–49.

    Article  MathSciNet  MATH  Google Scholar 

  85. J. Rubinstein, P. Sternberg, and J. B. Keller, Fast reaction, slow diffusion and curve shortening, SIAM J. Appl. Math. 49 (1989), 116–133.

    Article  MathSciNet  MATH  Google Scholar 

  86. H. M. Soner, Motion of a set by the curvature of its boundary, J. Differential Equations 101 (1993), 313–372.

    Article  MathSciNet  MATH  Google Scholar 

  87. H. M. Soner, Ginzburg-Landau equation and motion by mean curvature, I: Convergence, J. Geom. Anal. 7 (1997), 437–475, II to appear ibid.

    Article  MathSciNet  MATH  Google Scholar 

  88. H. M. Soner and P. E. Souganidis, Uniqueness and singularities of rotationally symmetric domains moving by mean curvature, Comm. Partial Differential Equations 18 (1993), 859–894.

    Article  MathSciNet  MATH  Google Scholar 

  89. P. Soravia, Generalized motion of a front along its normal direction: A differential games approach, Nonlinear Anal. 22 (1994), 1242–1262.

    Article  MathSciNet  Google Scholar 

  90. P. Soravia and P. E. Souganidis, Phase field theory for FitzHugh-Nagumo type systems, SIAM J. Math. Anal. 42 (1996), 1341–1359.

    Article  MathSciNet  Google Scholar 

  91. P. E. Souganidis, Front propagation: theory and application, in: Viscosity Solutions and Applications (I. Capuzzo Dolcetta and P.-L. Lions, eds.), Lecture Notes in Math. 1660, Springer, Berlin, 1997, 186–242.

    Chapter  Google Scholar 

  92. P. E. Souganidis, Stochastic Homogenization for Hamilton-Jacobi equations and applications, Asymptotic Anal 20 (1999), 1–11.

    MathSciNet  MATH  Google Scholar 

  93. H. Spohn, Large Scale Dynamics of Interacting Particles, Springer-Verlag, New York, 1991.

    Book  MATH  Google Scholar 

  94. H. Spohn, Interface motion in models with stochastic dynamics, J. Statist Phys.71 (1993), 1081–1132.

    Article  MathSciNet  MATH  Google Scholar 

  95. F. Williams, Combustion Theory, 2nd ed., Addison-Wesley.

    Google Scholar 

  96. J. X. Xin, Existence and nonexistence of traveling waves and reaction-diffusion front propagation in periodic media, J. Statist Phys. 73 (1993), 893–926.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Souganidis, P.E. (2002). Recent developments in the theory of front propagation and its applications. In: Bourlioux, A., Gander, M.J., Sabidussi, G. (eds) Modern Methods in Scientific Computing and Applications. NATO Science Series, vol 75. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0510-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0510-4_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0782-8

  • Online ISBN: 978-94-010-0510-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics