Advertisement

A review of level set and fast marching methods for image processing

  • J. A. Sethian
Part of the NATO Science Series book series (NAII, volume 75)

Abstract

In recent years, a considerable amount of work has been developed concerning a partial differential equations-based approach to image processing. This work has been focussed on the interplay between geometric motion and non-linear evolution equations, and its applicability to problems in image enhancement and denoising, image segmentation, and shape recognition and classification. In this review article, we provide an overview for some of these ideas.

Keywords

Shape Recovery Eikonal Equation Extension Velocity Fast Marching Subjective Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. Adalsteinsson and J. A. Sethian, A fast level set method for propagating interfaces, J. Comp. Phys. 118 (2) (1995), 269–277.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    D. Adalsteinsson and J.A. Sethian, The fast construction of extension velocities in level set methods, J. Comp. Phys. 148 (1999), 2–22.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    L. Alvarez, P. L. Lions, and M. Morel, Image selective smoothing and edge detection bynonlinear diffusion. II, SIAM J. Numer. Anal. 29 (3) (1992), 845–866.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    T. J. Barth and J. A. Sethian, Numerical schemes for the Hamilton-Jacobi and level set equations on triangulated domains, J. Comp. Phys. 145 (1) (1998), 1–40.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    M. R. Brewer, R. Malladi, G. Pankiewicz, B. Conway, and L. Tarassenko, Methods for large-scale segmentation of cloud images, in: Proc. 1997 EUMETSAT Meteorological Satellite Data Users’ Conference, Brussels.Google Scholar
  6. [6]
    V. Caselles, F. Catte, T. Coll, and F. Dibos, A geometric model for active contours in image processing recovery, Numer. Math. 66 (1) (1993), 1–31.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    V. Caselles, R. Kimmel, and G. Sapiro, Geodesic active contours, in: Proc. Fifth IEEE Internat. Conf. on Computer Vision, ICCV ’95, Cambridge, MA, 694–699.Google Scholar
  8. [8]
    D. L. Chopp, Computing minimal surfaces via level set curvature flow, J. Comput. Phys. 106 (1993), 77–91.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    E. W. Dijkstra, A note on two problems in connection with graphs, Numer. Math. 1 (1959), 269–271.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    L. C. Evans, Partial Differential Equations, Berkeley Math. Lecture Notes Ser. 3A, 3B, Center for Pure and Applied Mathematics, University of California, Berkeley, CA, 1994.Google Scholar
  11. [11]
    R. Goldenberg, R. Kimmel, E. Rivlin, and M. Rudzsky, Fast geodesic active contours, IEEE Trans. Image Processing 10 (10) (2001), 1467–1475.MathSciNetCrossRefGoogle Scholar
  12. [12]
    M. Grayson, The heat equation shrinks embedded plane curves to round points, J. Differential Geom. 26 (1987), 285.MathSciNetzbMATHGoogle Scholar
  13. [13]
    M. Grayson, A short note on the evolution of surfaces via mean curvatures, J. Differential Geom. 58 (1989), 555.MathSciNetzbMATHGoogle Scholar
  14. [14]
    J. Helmsen, E. G. Puckett, P. Colella, and M. Dorr, Two new methods for simulating photolithography development, in: Proc. SPIE 1996 Internat. Sympos. on Microlithography, SPIE, 2726, June, 1996.Google Scholar
  15. [15]
    M. Kass, A. Witkin, and D. Terzopoulos, Snakes: active contour models, Internat. J. Computer Vision 1 (1988), 321–331.CrossRefGoogle Scholar
  16. [16]
    R. Kimmel and J. A. Sethian, Fast marching methods on triangulated domains, Proc. Nat. Acad. Sci. 95 (1998), 8341–8435.MathSciNetCrossRefGoogle Scholar
  17. [17]
    R. Malladi and J. A. Sethian, A unified approach for shape segmentation, representation, and recognition, Center for Pure and Applied Mathematics, Report 614, University of California, Berkeley, 1994.Google Scholar
  18. [18]
    R. Malladi and J. A. Sethian, Image processing via level set curvature flow, Proc. Nat. Acad. Sci. 92 (15) (1995), 7046–7050.MathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    R. Malladi and J. A. Sethian, Level set methods for curvature flow, image enhancement, and shape recovery in medical images, Visualization and Mathematics (H.-C. Hege and K. Polthier, eds.), Springer-Verlag, Berlin-Heidelberg-New York, 1997, 329–345.CrossRefGoogle Scholar
  20. [20]
    R. Malladi and J. A. Sethian, A unified approach to noise removal, image enhancement, and shape recovery, IEEE Trans. Image Processing 5 (11) (1996), 1554–1568.CrossRefGoogle Scholar
  21. [21]
    R. Malladi, and J. A. Sethian, An O(N log N) algorithm for shape modeling, Proc. Nat. Acad. Sci. U.S.A. 93 (1996), 9389–9392.MathSciNetzbMATHCrossRefGoogle Scholar
  22. [22]
    R. Malladi and J. A. Sethian, Image processing: flows under min/max curvature and mean curvature, Graphical Models and Image Processing 58 (2) (1996), 127–141.MathSciNetCrossRefGoogle Scholar
  23. [23]
    R. Malladi and J. A. Sethian, Shape modeling in medical imaging with marching methods, Report LBNL-39541, LBNL, University of California, Berkeley, 1996.Google Scholar
  24. [24]
    R. Malladi, and J. A. Sethian, Level set and fast marching methods in image processing and computer vision, in: Proc. IEEE Internat. Conf, on Image Processing, Lausanne, 1996.Google Scholar
  25. [25]
    R. Malladi, J. A. Sethian, and B. Vemuri, A topology independent shape modeling scheme, in: Proc. SPIE Conf, on Geometric Methods in Computer Vision II, Vol. 2031, San Diego, CA, 1993, 246–258.Google Scholar
  26. [26]
    R. Malladi, J. A. Sethian, and B.C. Vemuri, A fast level set based algorithm for topology-independent shape modeling, J. Math. Imaging and Vision 6 (2/3) (1996), 269–290.MathSciNetCrossRefGoogle Scholar
  27. [27]
    R. Malladi, Geometric Methods in Biomedical Image Analysis (R. Malladi, ed.), Springer Verlag, March 2002.CrossRefGoogle Scholar
  28. [28]
    S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi Formulations, J. Comput. Phys. 79 (1988), 12–49.MathSciNetzbMATHCrossRefGoogle Scholar
  29. [29]
    P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Machine Intelligence 12 (7) (1990), 629–639.CrossRefGoogle Scholar
  30. [30]
    E. Rouy and A. Tourin, A viscosity solutions approach to shape-from-shading, SIAM J. Numer. Anal 29 (3) (1992), 867–884.MathSciNetzbMATHCrossRefGoogle Scholar
  31. [31]
    G. Sapiro, Geometric Partial Differential Equations and Image Analysis, Cambridge University Press, 2001.zbMATHCrossRefGoogle Scholar
  32. [32]
    A. Sarti and R. Malladi, A geometric level set model for ultrasound analysis, LBNL-44442, October 1999, to appear in: Geometric Methods in Biomedical Image Analysis (R. Malladi, ed.), Springer Verlag, March 2002.Google Scholar
  33. [33]
    A. Sarti, R. Malladi, and J. A. Sethian, Subjective surfaces: a method for completing missing boundaries, Proc. Nat. Acad. Sci. U.S.A. 97 (2000), 6258–6263.MathSciNetzbMATHCrossRefGoogle Scholar
  34. [34]
    A. Sarti, R. Malladi, and J. A. Sethian, Subjective surfaces: a geometric model for boundary completion, IEEE Trans. Pattern Anal. Machine Intelligence (2001).Google Scholar
  35. [35]
    J. A. Sethian, An Analysis of Flame Propagation, Ph.D. Dissertation, Dept. of Mathematics, University of California, Berkeley, CA, 1982.Google Scholar
  36. [36]
    J. A. Sethian, Curvature and the evolution of fronts, Comm. Math. Phys. 101 (1985), 487–499.MathSciNetzbMATHCrossRefGoogle Scholar
  37. [37]
    J. A. Sethian, Numerical methods for propagating fronts, in: Variational Methods for Free Surface Interfaces, Menlo Park, Calif., 1985 (P. Concus and R. Finn, eds.), Springer-Verlag, New York, 1987, 155–164.CrossRefGoogle Scholar
  38. [38]
    J. A. Sethian, A fast marching level set method for monotonically advancing fronts, Proc. Nat. Acad. Sci. U.S.A. 93 (4) (1996), 1591–1595.MathSciNetzbMATHCrossRefGoogle Scholar
  39. [39]
    J. A. Sethian, A Review of the Theory, Algorithms, and Applications of Level Set Methods for Propagating Interfaces, Acta Numerica, Cambridge University Press, 1996.Google Scholar
  40. [40]
    J. A. Sethian, Fast marching level set methods for three-dimensional photolithography development, in: Proc. SPIE 1996 Internat. Sympos. on Microlithography, Santa Clara, CA.Google Scholar
  41. [41]
    J. A. Sethian, Fast marching methods, SIAM Rev. 41 (1999), 199–235.MathSciNetzbMATHCrossRefGoogle Scholar
  42. [42]
    J. A. Sethian, Level Set Methods and Fast Marching Methods, Cambridge Monogr. Appl. Comput. Math. 3, Cambridge University Press, 1999.zbMATHGoogle Scholar
  43. [43]
    J. A. Sethian, Evolution, implementation, and application of level set and fast marching methods for advancing fronts, J. Comp. Phys. 169 (2) (2001), 503–555.MathSciNetzbMATHCrossRefGoogle Scholar
  44. [44]
    J. A. Sethian and M. Popovici, Fast marching methods applied to computation of seismic travel times, Geophysics 64 (2) (1999).Google Scholar
  45. [45]
    J. A. Sethian and A. Vladimirsky, Fast methods for the eikonal and related Hamilton-Jacobi equations on unstructured meshes, Proc. Nat. Acad. Sci. U.S.A. 97 (11) (2000), 5699–5703.MathSciNetzbMATHCrossRefGoogle Scholar
  46. [46]
    J. A. Sethian and A. Vladimirsky, Ordered upwind methods for static Hamilton-Jacobi equations, Proc. Nat. Acad. Sci. U.S.A. 98 (20) (2001), 11069–11074.MathSciNetzbMATHCrossRefGoogle Scholar
  47. [47]
    J. A. Sethian and A. Vladimirsky, Ordered upwind methods for static Hamilton-Jacobi equations: theory and algorithms, Center for Pure and Applied Mathematics Technical Report PAM-792, University of California, Berkeley, 2001.Google Scholar
  48. [48]
    N. Sochen, R. Kimmel, and R. Malladi, A general framework for low level vision, IEEE Trans. Image Proc. 7 (3) (1998), 310–318, 1998.MathSciNetzbMATHCrossRefGoogle Scholar
  49. [49]
    J. N. Tsitsiklis, Efficient algorithms for globally optimal trajectories, IEEE Trans. Automatic Control 40 (1995), 1528–1538.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • J. A. Sethian
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations