Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 83))

  • 277 Accesses

Abstract

We perform a lattice analysis of the Faddeev-Niemi effective action conjectured to describe the low energy sector of SU (2) Yang-Mills theory. To this end we generate an ensemble of unit color vectors n from the Wilson action. The construction is such that the ensemble does not show long-range order but exhibits a mass gap of the order of 1 GeV. A study of exact lattice Schwinger-Dyson and Ward identities indicates that the generated ensemble cannot be described by the Faddeev-Niemi effective action or simple generalizations thereof.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, M., J. S. Ball, and F. Zachariasen (1983) ‘An effective action describing long range Yang-Mills theory’. Nucl. Phys. B229, 445.

    ADS  Google Scholar 

  2. Battye, R. and P. Sutcliffe (1998) ‘Knots as stable soliton solutions in a three-dimensional classical field theory’. Phys. Rev. Lett. 81, 4798.

    Article  MathSciNet  ADS  Google Scholar 

  3. Davies, C., G. Batrouni, G. Katz, A. Kronfeld, G. Lepage, K. Wilson, P. Rossi, and B. Svetitsky (1988) ‘Fourier acceleration in lattice gauge theories. 1. Landau gauge fixing’. Phys. Rev. D37, 1581.

    MathSciNet  ADS  Google Scholar 

  4. Faddeev, L. and A. Niemi (1997) ‘Knots and particles’. Nature 387, 58.

    Article  ADS  Google Scholar 

  5. Faddeev, L. and A. Niemi (1999) ‘Partially dual variables in SU(2) Yang-Mills theory’. Phys. Rev. Lett. 82, 1624.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Falcioni, M., G. Martinelli, M. Paciello, G. Parisi, and B. Taglienti (1986) ‘A new proposal for the determination of the renormalization group trajectories by Monte Carlo renormalization group method’. Nucl. Phys. B265, 187.

    Article  ADS  Google Scholar 

  7. Gies, H. (2001) ‘Wilsonian effective action for SU(2) Yang-Mills theory with Cho-Faddeev-Niemi-Shabanov decomposition’. Phys. Rev. D63, 125023.

    ADS  Google Scholar 

  8. Gonzalez-Arroyo, A. and M. Okawa (1987) ‘Renormalized coupling constants by Monte Carlo methods’. Phys. Rev. D 35, 672.

    ADS  Google Scholar 

  9. Koma, Y., H. Suganuma, and H. Toki (1999) ‘Flux tube ring and glueball properties in the dual Ginzburg-Landau theory’. Phys. Rev. D60, 074024.

    ADS  Google Scholar 

  10. Kronfeld, A. S.M. L. Laursen, G. Schierholz, and U.-J. Wiese (1987) ‘Monopole condensation and color confinement’. Phys. Lett B198, 516.

    ADS  Google Scholar 

  11. Maedan, S. and T. Suzuki (1989) ‘An infrared effective theory of quark confinement based on monopole condensation’. Prog. Theor. Phys. 81, 229–240.

    Article  ADS  Google Scholar 

  12. Mandelstam, S. (1976) ‘Vortices and quark confinement in non-Abelian gauge theories’. Phys. Rep. 23, 245.

    Article  ADS  Google Scholar 

  13. Polyakov, A. (1987) Gauge Fields and Strings. Harwood Academic, Chur.

    Google Scholar 

  14. Polyakov, A. M. (1975) ‘Compact gauge fields and the infrared catastrophe’. Phys. Lett. B59, 82–84.

    MathSciNet  ADS  Google Scholar 

  15. Polyakov, A. M. (1977) ‘Quark confinement and topology of gauge groups’. Nucl. Phys. B120, 429–458.

    Article  MathSciNet  ADS  Google Scholar 

  16. Seiberg, N. and E. Witten (1994) ‘Electric-magnetic duality, monopole condensation, and confinement in N=2 supersymmetric Yang-Mills theory’. Nucl. Phys. B426, 19–52.

    Article  MathSciNet  ADS  Google Scholar 

  17. Shabanov, S. (1999) ‘Yang-Mills theory as an Abelian theory without gauge fixing’. Phys. Lett. B463, 263.

    MathSciNet  ADS  Google Scholar 

  18. 't Hooft, G. (1976) ‘Gauge theories with unified weak, electromagnetic and strong interactions’, in: High Energy Physics, Proceedings of the EPS International Conference, Palermo 1975, A. Zichichi, ed., Editrice Compositori, Bologna 1976.

    Google Scholar 

  19. 't Hooft, G. (1981) ‘Topology of the gauge condition and new confinement phases in non-Abelian gauge theories’. Nucl. Phys. B190, 455.

    Article  MathSciNet  ADS  Google Scholar 

  20. Teper, M. J. (1998) ‘Glueball masses and other physical properties of SU(N) gauge theories in D = 3+1: A review of lattice results for theorists’, hep-th/9812187.

    Google Scholar 

  21. van Baal, P. and A. Wipf (2001) ‘Classical gauge vacua as knots’. Phys. Lett. B515, 181–184.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dittmann, L., Heinzl, T., Wipf, A. (2002). An Effective Theory for the SU(2) Mass Gap?. In: Greensite, J., Olejník, Š. (eds) Confinement, Topology, and Other Non-Perturbative Aspects of QCD. NATO Science Series, vol 83. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0502-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0502-9_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0874-0

  • Online ISBN: 978-94-010-0502-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics