Lattice Monopoles in Hot SU(2) Gluodynamics as Blocked Continuum Defects

  • M. N. Chernodub
  • K. Ishiguro
  • T. Suzuki
Part of the NATO Science Series book series (NAII, volume 83)


We propose to consider lattice monopoles in gluodynamics as continuum monopoles blocked to the lattice. In this approach the lattice is associated with a measuring device consisting of finite-sized detectors of monopoles (lattice cells). Thus a continuum monopole theory defines the dynamics of the lattice monopoles. We apply this idea to the static monopoles in high temperature gluodynamics. We show that our suggestion allows to describe the numerical data both for the density of the lattice monopoles and for the lattice monopole action in terms of a continuum Coulomb gas model.


Magnetic Charge String Tension Nonabelian Gauge Theory Monopole Charge Quark Confinement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    't Hooft, G. (1975) in High Energy Physics, ed. A. Zichichi, EPS International Conference, Palermo; Mandelstam, S. (1976) “Vortices and quark confinement in nonabelian gauge theories”, Phys. Rept. 23, 245.Google Scholar
  2. 2.
    't Hooft, G. (1981) “Topology of the gauge condition and new confinement phases in nonabelian gauge theories”, Nucl. Phys. B190, 455.MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    see, e.g., review: Chernodub, M. N. and Polikarpov, M. I. (1997) “Abelian projections and monopoles”, in “Confinement, Duality, and Nonperturbative Aspects of QCD”, Ed. by P. van Baal, Plenum Press, p. 387, hep-th/9710205; Haymaker, R.W. (1999) “Confinement studies in lattice QCD” Phys. Rept. 315, 153.Google Scholar
  4. 4.
    Suzuki, T. and Yotsuyanagi, I. (1990) “A possible evidence for abelian dominance in quark confinement”, Phys. Rev. D42, 4257; Bali, G. S., Bornyakov, V., Muller-Preussker, M. and Schilling, K. (1996) “Dual superconductor scenario of confinement: A systematic study of Gribov copy effects”, Phys. Rev. D54, 2863.ADSGoogle Scholar
  5. 5.
    Ejiri, S., Kitahara, S.I., Matsubara Y. and Suzuki, T. (1995) “String tension and monopoles in T ≠ 0 SU(2) QCD”, Phys. Lett. B343, 304ADSGoogle Scholar
  6. Ejiri, S. (1996) “Monopoles and spatial string tension in the high temperature phase of SU(2) QCD”, Phys. Lett. B376, 163.MathSciNetADSGoogle Scholar
  7. 6.
    Bietenholz, W. and Wiese, UJ. (1996) “Perfect lattice actions for quarks and gluons”, Nucl. Phys. B464, 319ADSCrossRefGoogle Scholar
  8. 7.
    Bietenholz, W. and Wiese, U.J. (1996) “Perfect lattice actions for quarks and gluons”, Nucl. Phys. B464, 319ADSCrossRefGoogle Scholar
  9. 8.
    Bornyakov V.G. et al (2001) “Anatomy of the lattice magnetic monopoles”, hep-lat/0103032.Google Scholar
  10. 9.
    Polyakov, A.M. (1977) “Quark confinement and topology of gauge groups”, Nucl. Phys. B120 (1977), 429.MathSciNetADSCrossRefGoogle Scholar
  11. 10.
    Chernodub, M.N., Ishiguro, K., and Suzuki, T. (2002) in preparation.Google Scholar
  12. 11.
    Ivanenko, T.L., Pochinsky, A.V. and Polikarpov, M.I. (1990) “Extended Abelian monopoles and confinement in the SU(2) lattice gauge theory”, Phys. Lett. B252, 631.ADSGoogle Scholar
  13. 12.
    Ishiguro, K., Suzuki, T., and Yazawa, T. (2002) “Effective monopole action at finite temperature in SU(2) gluodynamics”, JHEP 0201, 038.ADSCrossRefGoogle Scholar
  14. 13.
    Bali G.S. et al (1993) “The spatial string tension in the deconfined phase of the (3+1)-dimensional SU(2) gauge theory”, Phys. Rev. Lett. 71, 3059.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • M. N. Chernodub
    • 1
    • 2
  • K. Ishiguro
    • 2
  • T. Suzuki
    • 2
  1. 1.Institute of Theoretical and Experimental PhysicsMoscowRussia
  2. 2.Institute of Theoretical PhysicsUniversity of KanazawaKanazawaJapan

Personalised recommendations