Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 83))

  • 279 Accesses

Abstract

The new approach to quantum mechanical problems is proposed. Quantum states are represented in an algebraic program, by lists of variable length, while operators are well defined functions on these lists. Complete numerical solution of a given system can then be automatically obtained. The method is applied to Wess-Zumino quantum mechanics and D = 2 and D = 4 supersymmetric Yang-Mills quantum mechanics with the SU(2) gauge group. Convergence with increasing size of the basis was observed in various cases. Many old results were confirmed and some new ones, especially for the D = 4 system, are derived. Preliminary results in higher dimensions are also presented. In particular the spectrum of the zero-volume glueballs in 4 < D < 11 is obtained for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Witten, Nucl. Phys. B185/188 (1981) 513.

    Article  ADS  Google Scholar 

  2. F. Cooper, A. Khare and U. Sukhatme, Phys. Rep. 251 (1995) 267, hep-th/9405029.

    Article  MathSciNet  ADS  Google Scholar 

  3. M. Claudson and M. B. Halpern, Nucl. Phys. B250 (1985) 689; J. Greensite and M. B. Halpem, Nucl. Phys. B242 (1984) 167.

    Article  MathSciNet  ADS  Google Scholar 

  4. T. Banks, W. Fishier, S. Shenker and L. Susskind, Phys.Rev. D55 (1997) 6189; hep-th/9610043.

    Google Scholar 

  5. B. de Wit, M. Lüscher and H. Nicolai, Nucl. Phys. B320 (1989) 135.

    Article  ADS  Google Scholar 

  6. M. Lüscher, Nucl. Phys. B219 (1983) 233.

    Article  ADS  Google Scholar 

  7. M. Lüscher and G. Münster, Nucl. Phys. B232 (1984) 445.

    Article  ADS  Google Scholar 

  8. P. van Baal, Acta Phys. Polon. B20 (1989) 295; also in At the Frontiers of Particle Physics Handbook of QCD, Boris loffe Festschrift, vol. 2, ed. M. Shifman (World Scientific, Singapore 2001) p.683; hep-ph/0008206.

    Google Scholar 

  9. J. Polchinski, String Theory, Cambridge University Press, Cambridge, 1998.

    Book  Google Scholar 

  10. S. Sethi and M. Stern, Comm. Math. Phys. 194 (1998) 675; P. Yi, Nucl. Phys. B505 (1997) 307; A. V. Smilga, Nucl. Phys. B266 (1986) 45.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. G. Moore, N. Nekrasov and S. Shatashvili, Commun. Math. Phys. 209 (2000) 77; M.B. Green and M. Gutperle, JHEP 01 (1998) 005.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. W. Krauth and M. Staudacher, Nucl. Phys. B584 (2000) 641, hep-th/0004076.

    Article  MathSciNet  ADS  Google Scholar 

  13. D. Kabat, G. Lifschytz and D. A. Lowe, Phys. Rev. D64 (2001) 124015, hep-th/0105171.

    MathSciNet  ADS  Google Scholar 

  14. R. A. Janik and J. Wosiek, Acta Phys. Polon B32 (2001) 2143, hep-th/9903121; P. Bialas and J. Wosiek, Nucl. Phys. B (Proc. Suppl.) 106 (2002) 968, hep-lat/0111034.

    ADS  Google Scholar 

  15. H. Aoki et al., Prog. Theor. Phys. Suppl. 134 (1999) 47, hep-th/9908038.

    Article  ADS  Google Scholar 

  16. J. Ambjorn, K.N. Anagnostopoulos and A. Krasnitz, JHEP 0106 (2001) 069.

    Google Scholar 

  17. J. Wosiek, hep-th/0203116.

    Google Scholar 

  18. J. Kogut and L. Susskind, Phys. Rev. D11 (1975) 395.

    ADS  Google Scholar 

  19. Y. Matsumura, N. Sakai and T. Sakai, Phys. Rev. D52 (1995) 2446.

    ADS  Google Scholar 

  20. J. R. Hiller, S. Pinsky and U. Trittmann, hep-th/0112151; hep-th/0106193.

    Google Scholar 

  21. M. A. Shifman, ITEP Lectures on Particle Physics and Field Theory, World Scientific, Singapore, 1999.

    MATH  Google Scholar 

  22. M. B. Halpern and C. Schwartz, Int. J. Mod. Phys. A13 (1998) 4367, hep-th/9712133.

    MathSciNet  ADS  Google Scholar 

  23. C. Itzykson and J.-B. Zuber, Quantum Field Theory, McGraw-Hill, New York, 1980.

    Google Scholar 

  24. P. Jordan and E. P. Wigner, Z. Phys. 47 (1928) 631.

    Article  ADS  MATH  Google Scholar 

  25. P. van Baal, hep-th/0112072.

    Google Scholar 

  26. J. Trzetrzelewski and J. Wosiek, in preparation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wosiek, J. (2002). Supersymmetric Yang-Mills Quantum Mechanics. In: Greensite, J., Olejník, Š. (eds) Confinement, Topology, and Other Non-Perturbative Aspects of QCD. NATO Science Series, vol 83. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0502-9_33

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0502-9_33

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0874-0

  • Online ISBN: 978-94-010-0502-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics