Advertisement

Dual Superconductivity, Effective String Theory, and Regge Trajectories

  • M. Baker
  • R. Steinke
Chapter
Part of the NATO Science Series book series (NAII, volume 83)

Abstract

We show how an effective field theory of long distance QCD, describing a dual superconductor, can be expressed as an effective string theory of superconducting vortices. We evaluate the semiclassical expansion of this effective string theory about a classical rotating string solution in any spacetime dimension D. We show that, after renormalization, the zero point energy of the string fluctuations remains finite when the masses of the quarks on the ends of the string approach zero. For D = 26 the semiclassical energy spectrum of the rotating string formally coincides with that of the open string in classical Bosonic string theory. However, its physical origin is different. It is a semiclassical spectrum of an effective string theory valid only for large values of the angular momentum. For D = 4 the first semiclassical correction adds the constant 1/12 to the classical Regge formula for the angular momentum of mesons on the leading Regge trajectory. The excited vibrational modes of the rotating string give rise to daughter Regge trajectories determining the spectrum of hybrid mesons.

Keywords

Open String Flux Tube Effective Field Theory Regge Trajectory Geodesic Curvature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Nambu, Phys. Rev. D10, 4262 (1974).ADSGoogle Scholar
  2. 2.
    S. Mandelstam, Phys. Rep. 23C, 245 (1976).ADSCrossRefGoogle Scholar
  3. 3.
    G. 't Hooft, in High Energy Physics, Proceedings of the European Physical Society Conference, Palermo, 1975, éd. A. Zichichi (Editrice Compositori, Bologna, 1976).Google Scholar
  4. 4.
    H. B. Nielsen and P. Olesen, Nucl. Phys. B61, 45 (1973).ADSCrossRefGoogle Scholar
  5. 5.
    M. Baker, J. S. Ball and F. Zachariasen, Phys. Rev. D44, 3328 (1991).ADSGoogle Scholar
  6. 6.
    M. Baker, J. S. Ball, N. Brambilla, G. M. Prosperi and F. Zachariasen, Phys. Rev. D54, 2829 (1996).MathSciNetADSGoogle Scholar
  7. 7.
    M. Baker and R. Steinke, Phys. Rev. D69, 094013 (2001), hep-ph/0006069.ADSGoogle Scholar
  8. 8.
    E. T. Akhmedov, M. N. Chernodub, M. I. Polikarpov and M. A. Zubkov, Phys. Rev. D53, 2087 (1996).MathSciNetADSGoogle Scholar
  9. 9.
    A. M. Polyakov, Gauge Fields and Strings, 151–191 (Harwood Academic Publishers, Chur, Switzerland, 1987).Google Scholar
  10. 10.
    M. Baker and R. Steinke, hep-th/0201169, to be published, Phys. Rev. D (2002).Google Scholar
  11. 11.
    M. Lüscher, K. Symanzik and P. Weisz, Nucl. Phys. B173, 356 (1980).Google Scholar
  12. 12.
    M. Lüscher, Nucl. Phys B180, 317 (1981).ADSCrossRefGoogle Scholar
  13. 13.
    O. Alvarez, Nucl. Phys B216, 125 (1983).ADSCrossRefGoogle Scholar
  14. 14.
    R. Dashen, B. Hasslacher and A. Neveu, Phys. Rev. D10, 4114 (1974).ADSGoogle Scholar
  15. 15.
    G. 't Hooft, Nucl. Phys. B153, 141 (1979).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • M. Baker
    • 1
  • R. Steinke
    • 1
  1. 1.University of WashingtonSeattleUSA

Personalised recommendations