Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 83))

  • 278 Accesses

Abstract

A model for the infrared sector of SU (2) Yang-Mills theory, based on magnetic vortex degrees of freedom represented by (closed) random world-surfaces, is presented. The model quantitatively describes both the confinement properties (including the finite-temperature transition to a deconfined phase) and the topological susceptibility of the Yang-Mills ensemble. A (quenched) study of the spectrum of the Dirac operator furthermore yields a behavior for the chiral condensate which is compatible with results obtained in lattice gauge theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Engelhardt, M. and Reinhardt, H. (2000) Center vortex model for the infrared sector of Yang-Mills theory — confinement and deconfinement, Nuclear Physics, B585, pp. 591–613

    MathSciNet  ADS  Google Scholar 

  2. Engelhardt, M. (2000) Center vortex model for the infrared sector of Yang-Mills theory — topological susceptibility, Nuclear Physics, B585, pp. 614–633

    MathSciNet  ADS  Google Scholar 

  3. Engelhardt, M. (2002) Center vortex model for the infrared sector of Yang-Mills theory, Nuclear Physics (Proceedings Supplements), 106, pp. 655–657

    Article  ADS  Google Scholar 

  4. Engelhardt, M. (2002) Center vortex model for the infrared sector of Yang-Mills theory — quenched Dirac spectrum and chiral condensate, hep-lat/0204002, pp. 1–35

    Google Scholar 

  5. Faber, M., Greensite, J. and Olejník, Š. (1998) Casimir scaling from center vortices: Towards an understanding of the adjoint string tension, Physical Review, D57, pp. 2603–2609

    ADS  Google Scholar 

  6. Nielsen, H.B. and Olesen, P. (1979) A quantum liquid model for the QCD vacuum: Gauge and rotational invariance of domained and quantized homogeneous color fields, Nuclear Physics, B160, pp. 380–396 Ambjørn, J. and Olesen, P. (1980) On the formation of a random color magnetic quantum liquid in QCD, Nuclear Physics, B170, pp. 60-78

    MathSciNet  ADS  Google Scholar 

  7. Bali, G.S., Fingberg, J., Heller, U.M., Karsch, F. and Schilling, K. (1993) The spatial string tension in the deconfined phase of the (3+1)-dimensional SU(2) gauge theory, Physical Review Letters, 71, pp. 3059–3062

    Article  ADS  Google Scholar 

  8. Del Debbio, L., Faber, M., Greensite, J. and Olejník, Š. (1997) Center dominance and Z(2) vortices in SU(2) lattice gauge theory, Physical Review, D55, pp. 2298–2306

    ADS  Google Scholar 

  9. Del Debbio, L., Faber, M., Giedt, J., Greensite, J. and Olejnfk, S. (1998) Detection of center vortices in the lattice Yang-Mills vacuum, Physical Review, D58, pp. 094501-1-15

    Google Scholar 

  10. Engelhardt, M., Langfeld, K., Reinhardt, H. and Tennert, O. (2000) Deconfinement in SU(2) Yang-Mills theory as a center vortex percolation transition, Physical Review, D61, pp. 054504-1-10

    Google Scholar 

  11. Engelhardt, M. and Reinhardt, H. (2000) Center projection vortices in continuum Yang-Mills theory, Nuclear Physics, B567, pp. 249–292

    MathSciNet  Google Scholar 

  12. Allés, B., D'Elia, M. and Di Giacomo, A. (1997) Topology at zero and finite T in SU(2) Yang-Mills theory, Physics Letters, B412, pp. 119–124

    ADS  Google Scholar 

  13. De Forcrand, P. and D'Elia, M. (1999) On the relevance of center vortices to QCD, Physical Review Letters, 82, pp. 4582–4585

    Article  ADS  Google Scholar 

  14. Bertie, R., Engelhardt, M. and Faber, M. (2001) Topological susceptibility of Yang-Mills center projection vortices, Physical Review, D64, pp. 074504-1-10

    Google Scholar 

  15. Banks, T. and Casher, A. (1980) Chiral symmetry breaking in confining theories, Nuclear Physics, B169, pp. 103–125

    MathSciNet  ADS  Google Scholar 

  16. Bernard, C. and Golterman, M. (1992) Chiral perturbation theory for the quenched approximation, Nuclear Physics (Proceedings Supplements), 26, pp. 360–362 Sharpe, S.R. (1993) Problems with the quenched approximation in the chiral limit, Nuclear Physics (Proceedings Supplements), 30, pp. 213-216

    Article  ADS  Google Scholar 

  17. Fleming, G.T., Chen, P., Christ, N.H., Kaehler, A.L., Malureanu, C.I., Mawhinney, R.D., Siegert, G.U., Sui, C.-Z., Vranas, P.M. and Zhestkov, Y (1999) The domain wall fermion chiral condensate in quenched QCD, Nuclear Physics (Proceedings Supplements), 73, pp. 207–209

    Article  ADS  MATH  Google Scholar 

  18. Hands, S.J. and Teper, M. (1990) On the value and the origin of the chiral condensate in quenched SU(2) lattice gauge theory, Nuclear Physics, B347, pp. 819–853

    ADS  Google Scholar 

  19. Kogut, J.B., Polonyi, J., Wyld, H.W., Shigemitsu, J. and Sinclair, D.K. (1985) Further evidence for the first order nature of the pure gauge SU(3) deconfinement transition, Nuclear Physics, B251, pp. 311–332

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Engelhardt, M. (2002). Center Vortex Model for Nonperturbative Strong Interaction Physics. In: Greensite, J., Olejník, Š. (eds) Confinement, Topology, and Other Non-Perturbative Aspects of QCD. NATO Science Series, vol 83. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0502-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0502-9_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0874-0

  • Online ISBN: 978-94-010-0502-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics