Dynamical Mass Generation in Quantum Field Theory: Some Methods With Application to the Gross-Neveu Model and Yang-Mills Theory

  • David Dudal
  • Karel Van Acoleyen
  • Henri Verschelde
Chapter
Part of the NATO Science Series book series (NAII, volume 83)

Abstract

We introduce some techniques to investigate dynamical mass generation. The Gross- Neveumodel [1] (GN) is used as a toy model, because the GN mass gap is exactly known [2], making it possible to check reliability of the various methods. Very accurate results are obtained. Also application to SU(N) Yang-Mills (YM) is discussed.

Keywords

Ghost 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. J. Gross, A. Neveu, Phys. Rev. D10 (1974) 3235ADSGoogle Scholar
  2. 2.
    P. Forgács, F. Niedermayer, P. Weisz, Nucl. Phys. B367 (1991) 123ADSCrossRefGoogle Scholar
  3. 3.
    F. V. Gubarev, L. Stodolsky, V. I. Zakharov, Phys. Rev. Lett. 86 (2001) 2220ADSCrossRefGoogle Scholar
  4. 4.
    F. V. Gubarev, V. I. Zakharov, Phys. Lett. B501 (2001) 28 K. G. Chetyrkin, S. Narison, V. I. Zakharov, Nucl. Phys. B550 (1999) 353ADSGoogle Scholar
  5. 5.
    K. I. Kondo, hep-th/0009152 K. I. Kondo, T. Shinohara, Prog. Theor. Phys. 105 (2001) 649 K. I. Kondo, Phys. Rev. D57 (1998) 7467Google Scholar
  6. 6.
    F. Freire, Phys. Lett. B526 (2002) 405MathSciNetADSGoogle Scholar
  7. 7.
    T. Suzuki, I. Yotsuyanagi, Phys. Rev. D42 (1990) 4257 H. Hioki, S. Kitahara, S. Kiura, Y. Matsubara, O. Miyamura, S. Ohno, T. Suzuki, Phys. Lett. B272 (1991) 326, erratum ibid. B281 (1992) 416ADSGoogle Scholar
  8. 8.
    K. Amemiya, H. Suganuma, Phys. Rev. D60 (1999) 114509 K. Amemiya, H. Suganuma, Nucl. Phys. Proc. Suppl. 83 (2000) 419ADSGoogle Scholar
  9. 9.
    T. Appelquist, J. Carazzone, Phys. Rev. D11 (1975) 2856ADSGoogle Scholar
  10. 10.
    H. Min, T. Lee, P. Y. Pac, Phys. Rev. D32 (1985) 440ADSGoogle Scholar
  11. 11.
    K. I. Kondo, T. Shinohara, Phys. Lett. B491 (2000) 263ADSGoogle Scholar
  12. 12.
    M. Schaden, hep-th/9909011, hep-th/0003030, hep-th/0108034Google Scholar
  13. 13.
    K. I. Kondo, Phys. Lett. B514 (2001) 335 K. I. Kondo, T. Murakami, T. Shinohara, T. Imai, Phys. Rev. D65 (2002) 085034ADSGoogle Scholar
  14. 14.
    T. Banks, S. Raby, Phys. Rev. D14 (1976) 2182ADSGoogle Scholar
  15. 15.
    H. Verscheide, Phys. Lett. B351 (1995) 242 H. Verscheide, S. Schelstraete, M. Vanderkelen, Z. Phys. C76 (1997) 161ADSGoogle Scholar
  16. 16.
    H. Verscheide, K. Knecht, K. Van Acoleyen, M. Vanderkelen, Phys. Lett. B516 (2001) 307ADSGoogle Scholar
  17. 17.
    K. Van Acoleyen, H. Verscheide, Phys. Rev. D65 (2002) 085006ADSGoogle Scholar
  18. 18.
    P. M. Stevenson, Phys. Rev. D23 (1981) 2916ADSGoogle Scholar
  19. 19.
    K. Van Acoleyen, J. A. Gracey, H. Verscheide, hep-th/0202194, to appear in Phys. Rev D Google Scholar
  20. 20.
    G. Curci, R. Ferrari, Nuovo Cim. A32 (1976) 151 G. Curci, R. Ferrari, Nuovo Cim. A35 (1976) 1, erratum ibid. A47 (1978) 555 G. Curci, R. Ferrari, Nuovo Cim. A35 (1976) 273ADSCrossRefGoogle Scholar
  21. 21.
    J. A. Gracey, Phys. Lett. B525 (2002) 89ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • David Dudal
    • 1
    • 2
  • Karel Van Acoleyen
    • 1
  • Henri Verschelde
    • 1
  1. 1.Department of Mathematical Physics and AstronomyGhent UniversityGentBelgium
  2. 2.Research Assistant of the Fund For Scientific Research-FlandersBelgium

Personalised recommendations