Liquid-Liquid Phase Equilibria in Binary Mixtures Under Negative Pressure

  • Attila R. Imre
Conference paper
Part of the NATO Science Series book series (NAII, volume 84)


Several binary or multicomponent solutions exhibit liquid-liquid phase transition; i.e. changing the temperature and/or pressure and/or concentration etc., the initially homogeneous liquid can split into two or more liquid phases. In this paper we would like to give examples where the extension of liquid-liquid solubility branches below p=0 gives us new information about the studied binary and quasi-binary mixtures.


Phase Diagram Negative Pressure Polymer Blend Tricritical Point Binary Polymer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Imre, A., Van Hook, W.A. (1998) Liquid-liquid equilibria in polymer solutions at negative pressure, Chem. Soc.Rev., 27, 117–123CrossRefGoogle Scholar
  2. 2.
    Imre, A.R, Melnichenko, G., Van Hook, W.A. and Wolf, B.A. (2001) On the effect of pressure on the phase transition of polymer blends and polymer solutions: Oligostyrene-n-alkane systems, Phys. Chem. Chem. Phys., 3, 1063–1066CrossRefGoogle Scholar
  3. 3.
    Imre, A.R., Van Hook, W.A. and Wolf, B.A. (2002) Liquid-liquid phase equilibria in polymer solutions and polymer mixtures, Macromolecular Symposia, in pressGoogle Scholar
  4. 4.
    Imre, A.R., Kraska, T. and Yelash, L.V. (2002) The effect of pressure on the liquid-liquid phase equilibrium of two polydisperse polyalkylsiloxane blends, Phys.Chem.Chem. Phys, 4, 992–1001CrossRefGoogle Scholar
  5. 5.
    Timmermans, J. and Lewin, J. (1953) A forgotten theory: the “negative saturation curve” Discuss. Faraday Soc., 15, 195–201CrossRefGoogle Scholar
  6. 6.
    Rebelo, L.P.N., Visak, Z..P. ans Szydlowski, J., this book, next paperGoogle Scholar
  7. 7.
    Smeller, L. (2002) Pressure-temperature phase diagrams of biomolecules, Biochim. Biophys. Acta, 1595, 11–29CrossRefGoogle Scholar
  8. 8.
    Machin, W.D. (1998) A simple method for the generation of negative pressure in liquids, Can. J. Chem., 76, 1578–1580Google Scholar
  9. 9.
    Kim, S.B., Ma, J. and Chan, M.H.W. (1993) Phase diagram of 3He-4He mixture in aerogel, Phys. Rev. Lett., 71, 2268–2271ADSCrossRefGoogle Scholar
  10. 10.
    Flory, P.J. (1953) Principles of Polymer Chemistry, Cornell University Press, Ithaca.Google Scholar
  11. 11.
    Wolf, B.A. and Blaum, G. (1976) Pressure Influences on the True Cosolvency — Measured and Calculated Solubility Limits of Polystyrene in Mixtures of Acetone and Diethylether, Makromol. Chem., 177, 1073–1088CrossRefGoogle Scholar
  12. 12..
    Imre, A., Van Hook, W.A. (1994) Polymer-Solvent Demixing Under Tension. Isotope and Pressure Effects on Liquid-Liquid Transitions. VII. Propionitrile-Polystyrene Solutions at Negative Pressure, J. Polym. Sci. B., 32, 2283–2287CrossRefGoogle Scholar
  13. 13.
    Rebelo, L.P.N., Visak, Z.P. and Szydlowski, J. (2002) Metastable critical lines in (acetone+polystyrene) solutions and the continuity of solvent-quality states, Phys. Chem. Chem. Phys., 4, 1046–1052CrossRefGoogle Scholar
  14. 14.
    Hosokawa, H., Nakata, M. and Dobashi, T. (1993) Coexistence curve of polystyrene in methylcyclohexane. VII. Coexistence surface and critical double point of binary system in T-p-space, J. Chem. Phys., 98, 10078–10084ADSCrossRefGoogle Scholar
  15. 15.
    Wells, P.A., de Loos, Th. W. and Kleintjens, L.A. (1993) Pressure pulsed induced critical scattering: spinodal and binodal curves for the system polystyrene + methylcylcohexane, Fluid Phase Eq., 83, 383–390CrossRefGoogle Scholar
  16. 16.
    Vanhee, S., Kiepen, F., Brinkmann, D., Borchard, W., Koningsweld, R. and Berghmans, H. (1994) The System Methylcyclohexane/Polystyrene. Experimental Critical Curves, Cloud-Point and Spinodal Isopleths, and their Description with a Semi-phenomenological Treatment, Macromol Chem. Phys., 195, 759–780CrossRefGoogle Scholar
  17. 17.
    Imre, A.R., Melnichenko, G. and Van Hook, W.A. (1999) Liquid-liquid equilibria in polystyrene solutions: the general pressure dependence, Phys. Chem. Chem. Phys., 1, 4287–4292CrossRefGoogle Scholar
  18. 18.
    Imre, A.R., Melnichenko, G. and Van Hook, W.A. (1999) A Polymer-Solvent System with Two Homogeneous Double Critical Points: Polystyrene (PS)/(n-heptane+methylcyclohexane), J. Polym. Sci. B., 37, 2747–2753CrossRefGoogle Scholar
  19. 19.
    Rebelo, L.P.N., Visak, Z.P., de Sousa, H.C., Szydlowski, J., de Azevedo, R.G., Ramos, A.M., Najdanovic-Visak, V., da Ponte, M.N. and Klein, J. (2002) Double critical phenomena in (water plus Polyacrylamides) solutions, Macromolecules, 35, 1887–1895ADSCrossRefGoogle Scholar
  20. 20.
    Rebelo, L.P.N. and Van Hook, W.A.(1993) An unusual phase diagram: the polystyrene/acetone system in its hypercritical region; near tricritical behavior in a pseudo-binary solution, J. Polym. Sci. B., 31, 895–8CrossRefGoogle Scholar
  21. 21.
    Schneider, G. M. (1972) Phase behavior and critical phenomena in fluid mixtures under pressure, Ber. Bunsen Ges., 76, 325–331Google Scholar
  22. 22.
    Narayanan, T. and Kumar, A. (1994) Reentrant phase transitions in multicomponent liquid mixtures, Phys. Rep., 249, 135–218ADSCrossRefGoogle Scholar
  23. 23.
    Schneider, G.M. (2002) Aqueous solutions at pressures up to 2 GPa: gas-gas equilibria, closed loops, high-pressure immiscibility, salt effects and related phenomena, Phys. Chem. Chem. Phys., 4, 845–852CrossRefGoogle Scholar
  24. 24.
    Otake, K., Karaki, R., Ebina, T., Yokoyama, C. and Takahashi, S. (1993) Pressure Effects on the Aggregation of PolylN-isopropylacrylamide) and Poly(N-isopropylacrylamide-co-acrylic acid) in Aqueous Solutions, Macromolecules, 26, 2194–2197ADSCrossRefGoogle Scholar
  25. 25.
    de Azevedo, R. G., Rebelo, L.P.N., Ramos, A.M., Szydlowski, J., de Sousa, H.C. and Klein, J. (2001) Phase behavior of (polyacrylamides+water) solutions: concentration, pressure and isotope effects, Fluid Phase Eq., 185, 189–198CrossRefGoogle Scholar
  26. 26.
    Imre, A.R. and Wolf, B.A., unpublished resultGoogle Scholar
  27. 27.
    Heremans, K. and Smeller, L. (1998) Protein structure and dynamics at high pressure, Biochim. Biophys. Acta, 1368, 353–370CrossRefGoogle Scholar
  28. 28.
    Whittingham, T.A. (2001) Estimated fetal cerebral ultrasound exposures from clinical examinations, Ultrasound Med. Bioi, 27, 877–882CrossRefGoogle Scholar
  29. 29.
    Bailey, M.R., Blackstock, D.T., Cleveland, R.O. and Crum, L.A. (1998) Comparison of electrohydraulic lithotripters with rigid and pressure-release ellipsoidal reflectors. I. Acoustic fields, J. Acoust. Soc. Am., 104, 2517–2524ADSCrossRefGoogle Scholar
  30. 30.
    Ludwig, H., Scigalla, W. and Sojka, B. (1996) Pressure and temperature inactication of microorganisms, in. J.L. Markley, D.B. Northrop and CA. Royer (eds.), High Pressure Effects in Molecular Biophysics, Oxford University Press, New York, 346–363Google Scholar
  31. 31.
    Gelb, L.D., Gubbins, K.E., Radhakrishnan, R. and Sliwinska-Bartkowiak, M. (1999) Phase separation in confined systems, Rep. Prog. Phys., 62, 1573–1659ADSCrossRefGoogle Scholar
  32. 32.
    Machin. W.D. and Stuckless, J.T. (1985) Capillary-condensed Water in Silica Gel, J. Chem. Soc. Faraday Trans., 81, 597–600CrossRefGoogle Scholar
  33. 33.
    Zhang, J., Liu, G. and Jonas, J. (1992) Effects of Confinement on the Glass Transition Temperature of Molecular Liquids, J. Phys. Chem., 96, 3478–3480CrossRefGoogle Scholar
  34. 34.
    Jackson, C.L. and McKenna, G.B. (1996) Vitrification and Crystallization of Organic Liquids Confined to Nanoscale Pores, Chem. Mater., 8, 2128–2137CrossRefGoogle Scholar
  35. 35.
    Hohenberger, Th., König, R. and Pobell, F. (1998) Phase Separation of Liquid 3He-4He Mixtures in Porous Vycor Glass, J. Low Temp. Phys., 110, 579–584ADSCrossRefGoogle Scholar
  36. 36.
    Falicov, A. and Berker, A.N. (1995) Correlated Random-Chemical-Potential Model for the Phase Transitions of Helium Mixtures in Porous Media, Phys. Rev. Lett., 74, 426–429ADSCrossRefGoogle Scholar
  37. 37.
    Pricaupenko, L. and Treiner, J. (1995) Phase separation of Liquid 3He-4He Mixtures: Effect of Confinement, Phys. Rev. Lett., 74, 430–433ADSCrossRefGoogle Scholar
  38. 38.
    Maris, H. and Balibar, S. (2000), Negative Pressures and Cavitation in Liquid Helium, Physics Today, 53, 29–34CrossRefGoogle Scholar
  39. 39.
    Lilly, M.P. and Hallock, R.B. (1998) Compressibility of 4He Liquid Confined in Nuclepore, J. Low Temp. Phys., 110, 555–560ADSCrossRefGoogle Scholar
  40. 40.
    Yorozu, S., Hiroi, M., Fukuyama, H., Akimoto, H., Ishimoto, H. and Ogawa, S. (1992) Phase separation curve of 3He-4He mixtures under pressure, Phys. Rev. B, 45, 12942–12948ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • Attila R. Imre
    • 1
  1. 1.Materials DepartmentKFKI Atomic Energy Research InstituteHungary

Personalised recommendations