Skip to main content

Water at Positive and Negative Pressures

  • Conference paper
Liquids Under Negative Pressure

Part of the book series: NATO Science Series ((NAII,volume 84))

  • 340 Accesses

Abstract

We review recent results of molecular dynamics simulations of two models of liquid water, the extended simple point charge (SPC/E) and the Mahoney-Jorgensen transferable intermolecular potential with five points (TIP5P), which is closer to real water than previouslyproposed classical pairwise additive potentials. Simulations of the TIP5P model for a wide range of deeply supercooled states, including both positive and negative pressures, reveal (i) the existence of a non-monotonic “nose-shaped” temperature of maximum density (TMD) line and a non-reentrant spinodal, (ii) the presence of a low temperature phase transition. The TMD that changes slope from negative to positive as P decreases and, notably, the point of crossover between the two behaviors is located at ambient pressure (temperature ≈ 4 °C, and density ≈ 1 g/cm3). Simulations on the dynamics of the SPC/E model reveal (iii) the dynamics at negative pressure shows a minimum in the diffusion constant D when the density is decreased at constant temperature, complementary to the known maximum of D at higher pressures, and (iv) the loci of minima of D relative to the spinodal shows that they are inside the thermodynamically metastable regions of the phase-diagram. These dynamical results reflect the initial enhancement and subsequent breakdown of the tetrahedral structure and of the hydrogen bond network as the density decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For elementary introductions to recent work on liquid water, the reader may wish to consult P. Ball, Life’s Matrix: A Biography of Water (Farrar Straus and Giroux, New York, 2000) or P. G. Debenedetti and H. E. Stanley, “The Novel Physics of Water at Low Temperatures” Physics Today (submitted).

    Google Scholar 

  2. V. Brazhkin. S. V. Buldyrev, V. N. Ryzhov, and H. E. Stanley [eds], New Kinds of Phase Transitions: Transformations in Disordered Substances Proc. NATO Advanced Research Workshop, Volga River (Kluwer, Dordrecht, 2002).

    Google Scholar 

  3. O. Mishima and H. E. Stanley, Nature 396, 329 (1998).

    Article  ADS  Google Scholar 

  4. M.-C. Bellissent-Funel, ed., Hydration Processes in Biology: Theoretical and Experimental Approaches (IOS Press, Amsterdam, 1999).

    Google Scholar 

  5. H. E. Stanley, S. V. Buldyrev, N. Giovambattista, E. La Nave, A Scala, F. Sciortino, and F. W. Starr, [Proc. IUPAP Statphys21, Cancun] Physica A 306, 230–242 (2002).

    Article  ADS  MATH  Google Scholar 

  6. S. V. Buldyrev, G. Franzese, N. Giovambattista, G. Malescio, M. R. Sadr-Lahijany, A. Scala, A. Skibinsky, and H. E. Stanley [Proc. International Conf. on Scattering Studies of Mesoscopic Scale Structure and Dynamics in Soft Matter] Physica A 304, 23–42 (2002).

    Article  ADS  Google Scholar 

  7. R. C. Dougherty and L. N. Howard, J. Chem. Phys. 109, 7379 (1998).

    Article  ADS  Google Scholar 

  8. A. Geiger, F. H. Stillinger, and A. Rahman, J. Chem. Phys. 70, 4185 (1979).

    Article  ADS  Google Scholar 

  9. H. E. Stanley and J. Teixeira, J. Chem. Phys. 73, 3404 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  10. R. J. Speedy, J. Chem. Phys. 86, 982 (1982); Ibid 86, 3002 (1992).

    Article  Google Scholar 

  11. R. J. Speedy, J. Chem. Phys. 91, 3354 (1987).

    Article  Google Scholar 

  12. P. H. Poole, F. Sciortino, U. Essmann, and H. E. Stanley, Nature 360, 324 (1992); Phys. Rev. E 48, 3799 (1993); F. Sciortino, P. H. Poole, U. Essmann, and H. E. Stanley, Ibid. 55, 727 (1997); S. Harrington, R. Zhang, P. H. Poole, F. Sciortino, and H. E. Stanley, Phys. Rev. Lett. 78, 2409 (1997).

    Article  ADS  Google Scholar 

  13. O. Mishima, J. Chem. Phys. 100, 5910 (1994).

    Article  ADS  Google Scholar 

  14. P. H. Poole, F. Sciortino, T. Grande, H. E. Stanley and C. A. Angell, Phys. Rev. Lett. 73, 1632 (1994); C. F. Tejero and M. Baus, Phys. Rev. E 57, 4821 (1998); T. M. TVuskett, P. G. Debenedetti, S. Sastry, and S. Torquato, J. Chem. Phys. 111 2647 (1999).

    Article  ADS  Google Scholar 

  15. M.-C. Bellissent-Funel, Europhys. Lett. 42, 161 (1998); O. Mishima and H. E. Stanley, Nature 392, 192 (1998).

    Article  ADS  Google Scholar 

  16. H. Tanaka, J. Chem. Phys. 105, 5099 (1996).

    Article  ADS  Google Scholar 

  17. A. Scala, F. W. Starr, E. La Nave, H. E. Stanley and F. Sciortino, Phys. Rev. E 62, 8016 (2000).

    Article  ADS  Google Scholar 

  18. S. Sastry, P. G. Debenedetti, F. Sciortino, and H. E. Stanley, Phys. Rev. E 53, 6144 (1996).

    Article  ADS  Google Scholar 

  19. L. P. N. Rebelo, P. G. Debenedetti, and S. Sastry, J. Chem. Phys. 109, 626 (1998).

    Article  ADS  Google Scholar 

  20. P. A. Netz and Th. Dorfm üller, J. Phys. Chem. B 102, 4875 (1998).

    Article  Google Scholar 

  21. K. Koga, X. C. Zeng, and H. Tanaka, Chem. Phys. Lett. 285, 278 (1998).

    Article  ADS  Google Scholar 

  22. W. T. Pockman, J. S. Sperry, and J. W. O’Leary, Nature 378, 715 (1995).

    Article  ADS  Google Scholar 

  23. J. Jonas, T. DeFries, and D. J. Wilbur, J. Chem. Phys. 65, 582 (1976).

    Article  ADS  Google Scholar 

  24. F. X. Prielmeier, E. W. Lang, R. J. Speedy, and H.-D. L üdemann, Phys. Rev. Lett. 59, 1128 (1987); Ber. Bunsenges. Phys. Chem. 92, 1111 (1988).

    Article  ADS  Google Scholar 

  25. M. Rami Reddy and M. Berkovitz, J. Chem. Phys. 87, 6682 (1987).

    Article  ADS  Google Scholar 

  26. F. Sciortino, A. Geiger, and H. E. Stanley, Nature 354, 218 (1991); Ibid., J. Chem. Phys. 96, 3857 (1992).

    Article  ADS  Google Scholar 

  27. N. Giovambattista, F. W. Starr, F. Sciortino, S. V. Buldyrev, and H. E. Stanley, Phys. Rev. E 65, 041502-1-041502-6 (2002) cond-mat/0201028.

    Google Scholar 

  28. E. La Nave, A. Scala, F. W. Starr, H. E. Stanley and F. Sciortino, Phys. Rev. E 64, 036102-1-036102-10 (2001); E. La Nave, H. E. Stanley and F. Sciortino, Phys. Rev. Letters 88, 035501-1 to 035501-4 (2002) cond-mat/0108546.

    Google Scholar 

  29. P. Gallo, F. Sciortino, P. Tartaglia, and S.-H. Chen, Phys. Rev. Lett. 76, 2730 (1996).

    Article  ADS  Google Scholar 

  30. F. W. Starr, F. Sciortino, and H. E. Stanley, Phys. Rev. E 60, 6757 (1999); F. W. Starr, S. T. Harrington, F. Sciortino, and H. E. Stanley, Phys. Rev. Lett., 82, 3629, (1999).

    Article  ADS  Google Scholar 

  31. A. Scala, F. W. Starr, E. La Nave, F. Sciortino and H. E. Stanley, Nature 406, 166 (2000).

    Article  ADS  Google Scholar 

  32. S. J. Henderson and R. J. Speedy, J. Phys. E: Scientific Instrumentation 13, 778 (1980).

    Article  ADS  Google Scholar 

  33. J. L. Green, D. J. Durben, G. H. Wolf, and C. A. Angell, Science 249, R649 (1990).

    Article  ADS  Google Scholar 

  34. I. I. Vaisman, L. Perera, and M. L. Berkovitz, J. Chem. Phys. 98, 9859 (1993).

    Article  ADS  Google Scholar 

  35. J. R. Errington and P. G. Debenedetti, Nature 409, 318 (2001).

    Article  ADS  Google Scholar 

  36. M. Yamada, S. Mossa, H. E. Stanley, F. Sciortino, Phys. Rev. Letters 88, 195701 (2002); cond-mat/0202094

    Article  ADS  Google Scholar 

  37. M. W. Mahoney and W. L. Jorgensen, J. Chem. Phys. 112, 8910 (2000); Ibid. 114, 363 (2001).

    Article  ADS  Google Scholar 

  38. F. H. Stillinger and A. Rahman, J. Chem. Phys. 60, 1545 (1974).

    Article  ADS  Google Scholar 

  39. J. M. Sorenson, G. Hura, R. M. Glaeser, and T. Head-Gordon, J. Chem. Phys. 113, 9149 (2000).

    Article  ADS  Google Scholar 

  40. P. A. Netz, F. W. Starr, H. E. Stanley, and M. C. Barbosa, J. Chem. Phys. 115, 344–348 (2001); cond-mat/0102196; P. A. Netz, F. W. Starr, H. E. Stanley, and M. C. Barbosa, cond-mat/0201130; P. A. Netz, F. Starr, M. C. Barbosa, H. E. Stanley, cond-mat/0201138.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Stanley, H.E. et al. (2002). Water at Positive and Negative Pressures. In: Imre, A.R., Maris, H.J., Williams, P.R. (eds) Liquids Under Negative Pressure. NATO Science Series, vol 84. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0498-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0498-5_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0896-2

  • Online ISBN: 978-94-010-0498-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics