Skip to main content

Limiting Tensions For Liquids and Glasses from Laboratory and MD Studies

  • Conference paper
Book cover Liquids Under Negative Pressure

Part of the book series: NATO Science Series ((NAII,volume 84))

Abstract

We discuss first the systematic passage of liquids from states of positive pressure to states of isotropic tension, using spectroscopic characterization methods. We then describe some experimental methods for characterizing the range of temperature under which common liquids and glassformers can be studied in such negative pressure states. While rather large tensions, up to nearly 200MPa have been obtained in these laboratory studies, much larger tensions can be generated in systems with long range attractive forces. We characterize the limiting tensions for such cases using the methods of molecular dynamics. In practice, liquids fail by homogeneously nucleated cavitation at tensions far below the spinodal limits defined by equations of state. We anticipate a crossover from nucleated to spinodal failure as the glass transition temperature meets the spinodal. We lay the basis for the experimental testing of this notion, using laboratory data for the case of the model glassformer, o-terphenyl. In the case of SiO2 glass we are able to characterize the failure mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See articles in Science (special issue) 267 (1995) 1924–1953.

    Google Scholar 

  2. L. Haar, J. Gallagher, G. S. Kell, National Bureau of Standards-National Research Council Steam Tables, McGraw-Hill: New York (1985).

    Google Scholar 

  3. J. L. Green, D. J. Durben, G. H. Wolf and C. A. Angell, Science 249 (1990) 649–652.

    Article  ADS  Google Scholar 

  4. S. B. Kiselev, J. M. H. Levelt Sengers and Q. Zheng, in Physical Chemistry of Aqueous Solutions: Meeting the Needs of Industry, eds. H. J. White Jr., J. V. Sengers, D. B. Neumann and J. C. Bellows, Begell House: New York (1995) 378.

    Google Scholar 

  5. (a) P. H. Poole, F. Sciortino, U. Essmann and H.E. Stanley, Nature (London), 360(6402) (1992) 324–328. (b) S. Harrington, R. Zhang, P. H. Poole, F. Sciortino and H. E. Stanley, Phys. Rev. Lett. 78(12) (1997) 2409-2412. (c) M. Yamada, S. Mossa, H. E. Stanley and F. Sciortino,http://xxx.lanl.gov/pdf7 cond-mat/0202094.

    Article  ADS  Google Scholar 

  6. (a) P. Brüeggeller and E. Mayer, Nature 288b (1980) 569; 298 (1982) 715. (b) J. Dubochet and A. W. McDowall, J. Microsc. 124 (1981) RP3. (c) G.P. Johari, A. Hallbrucker and E. Mayer, Nature 330 (1987) 552-553. (d) O. Mishima, J. Chem. Phys. 100 (1994) 5910.

    Article  ADS  Google Scholar 

  7. C. A. Angell, Ann. Rev. Phys. Chem. 34 (1983) 593–630.

    Article  ADS  Google Scholar 

  8. O. Mishima and H. E. Stanley, Nature 396 (1998) 329.

    Article  ADS  Google Scholar 

  9. (a) S. J. Henderson and R. J. Speedy, J. Phys. E. 13(7) (1980) 778–782. (b) S. J. Henderson and R. J Speedy, J. Phys. Chem. 91 (1987) 3069-3072.

    Article  ADS  Google Scholar 

  10. V. E. Rodgers and C. A. Angell, J. Chem. Ed. 60 (1983) 602.

    Article  Google Scholar 

  11. M. Berthelot, Ann. Chem. Ser. 3 30 (1850) 232.

    Google Scholar 

  12. E. Roedder, Science 155 (1967) 1413.

    Article  ADS  Google Scholar 

  13. G. C. Kennedy, Econ. Geol. 45 (1950) 629; G. J. Wasserburg, H. C. Heard, R. C. Newton, Am. J. Sci. 260 (1962) 501; J. L. Haas, Jr., U.S. Geol. Surv. Bull. 1421 (1976), data in part C by R. W. Potter II and D. L. Brown.

    Article  Google Scholar 

  14. Q. Zheng, D. J. Durben, G. H. Wolf and C. A. Angell, Science 254 (1991) 829.

    Article  ADS  Google Scholar 

  15. S. M. Sternar and R. J. Bodnar, Geochim. Cosmochim. Acta 48 (1984) 2659.

    Article  ADS  Google Scholar 

  16. Q. Zheng, Ph. D. Thesis, Arizona State University (1991).

    Google Scholar 

  17. V. P. Skripov, in Water and Steam, eds. J. Straub and K Scheffler, Pergamon: Elmsford, NY (1980).

    Google Scholar 

  18. J. C. Fisher, J. Appl. Phys. 19 (1948) 1063.

    ADS  Google Scholar 

  19. M. Blander and J. Katz, Am. Inst. Chem. Eng. J. 21 (1975) 833.

    Article  Google Scholar 

  20. C. A. Angell, J. Phys. Chem. (feature article, to be published).

    Google Scholar 

  21. T. Atake and C. A. Angell, J. Phys. Chem. 83 (1979) 3218.

    Article  Google Scholar 

  22. S. Sastry, Phys. Rev. Lett. 85 (2000) 590–593.

    Article  ADS  Google Scholar 

  23. W. Kob and H. C. Andersen, Phys. Rev. E. 51 (1995) 4626–4641.

    Article  ADS  Google Scholar 

  24. P. G. Debenedetti, F. H. Stillinger, T. M. Truskett and C. J. Roberts, J. Phys. Chem. B 103 (1999) 390.

    Article  Google Scholar 

  25. J. Shao and C. A. Angell (unpublished work).

    Google Scholar 

  26. L. V. Woodcock, C. A. Angell and P. A. Cheeseman, J. Chem. Phys. 65 (1976) 1565.

    Article  ADS  Google Scholar 

  27. J. Kieffer and C. A. Angell, J. Chem. Phys. 90 (1989) 4982–4991.

    Article  ADS  Google Scholar 

  28. P. H. Poole, M. Hemmati and C. A. Angell, Phys. Rev. Lett. 79(12) (1997) 2281–2284.

    Article  ADS  Google Scholar 

  29. J. Kieffer and C. A. Angell, J. Non-Cryst. Sol. 106 (1988) 336–342.

    Article  ADS  Google Scholar 

  30. C. A. Angell, P. A. Cheeseman, C. C. Phifer, Mat. Res. Soc. Symp. Proc. 63 (1986) 85–94.

    Article  Google Scholar 

  31. W. D. Machin and J. T. Stuckless, J. Colloid Interface Sci 108 (1985) 46–49.

    Article  Google Scholar 

  32. W. D. Machin and P. D. Golding, J. Chem. Soc. Faraday Trans. 1 83 (1987) 1203–1212.

    Article  Google Scholar 

  33. W. D. Machin and J. T. Stuckless, J. Chem. Soc. Faraday Trans. 1 81 (1985) 597–600.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Zheng, Q. et al. (2002). Limiting Tensions For Liquids and Glasses from Laboratory and MD Studies. In: Imre, A.R., Maris, H.J., Williams, P.R. (eds) Liquids Under Negative Pressure. NATO Science Series, vol 84. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0498-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0498-5_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0896-2

  • Online ISBN: 978-94-010-0498-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics