Negative Pressure Tail of a Reflected Pressure Pulse: A Lattice Boltzmann Study

  • Gábor Házi
  • Attila R. Imre
Conference paper
Part of the NATO Science Series book series (NAII, volume 84)

Abstract

In this paper, a numerical pressure wave reflection experiment in a two-dimensional liquid is presented. The liquid is simulated by the pseudo-potential extension of the lattice-Boltzmann method. In our experiment a pressure pulse is produced by a point source and the resulting pressure wave is reflected back by a wettable rigid wall. Negative pressure tail can be observed at the vicinity of the wall/liquid interface.

Keywords

Permeability Benzene Toluene Assure Petrol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Kedrinskii, V.K. (1976) Negative pressure profile in cavitation zone at underwater explosion near free surface, Acta Astronautica 3, 623–632CrossRefGoogle Scholar
  2. [2]
    Trevena, D.H. (1987) Cavitation and Tension in Liquids, Adam Hilger, BristolGoogle Scholar
  3. [3]
    Vinogradov V.E. and Pavlov, P.A. (2000) The Bounday of Limiting Superheats of n-Heptane, ethanol, benzene and Toluene in the Region of Negative Pressures, High Temperature 38,379–383CrossRefGoogle Scholar
  4. [4]
    Eisenmenger, W., Köhler, M., Pecha, R. and Wurster, C. (1997) Negative pressure amplitudes in water measured with the fiber optic hydrophone, Prog. Nat. Sci. 7, 499–501Google Scholar
  5. [5]
    Carnell, M.T., Gentry, T.P. and Emmony, D.C. (1998) The generation of negative pressure waves for cavitation studies, Ulrasonics 36, 689–693CrossRefGoogle Scholar
  6. [6]
    Imre, A., Martinás, K., and Rebelo, L.P.N. (1998) Thermodynamics of Negative Pressures in Liquids, J. Non-Equilib. Thermodyn. 23, 351–375ADSMATHCrossRefGoogle Scholar
  7. [7]
    Hazi G., Imre R. A., Mayer G. and Farkas I. (2002) Lattice Boltzmann nethods for two-phase flow modeling, Ann. Nucl. Energy, 29, 1421–1453CrossRefGoogle Scholar
  8. [8]
    Bhatnagar P. L., Gross E. P., Krook M. (1954) A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component systems, Phys. Rev., 94, 511–525ADSMATHCrossRefGoogle Scholar
  9. [9]
    Qian Y.H., d’Humiéres, Lallemand P., (1992) Lattice BGK for Navier-Stokes equation, Europhys. Letters, 17, 479–484ADSMATHCrossRefGoogle Scholar
  10. [10]
    Shan, X., Chen, H. (1993) Lattice Boltzmann model for simulating flows with multiple phases and components, Phys. Rev. E, 47, 1815–1819ADSCrossRefGoogle Scholar
  11. [II]
    Sehgal B. R., Nourgaliev R. R., Dinh T.N. (1999) Numerical simulation of droplet deformation and break-up by lattice-Boltzmann method, Prog. Nucl. Energy, 34, 471–488CrossRefGoogle Scholar
  12. [12]
    Qian Y. H. and Chen S. (1997) Finite size effect in lattice-BGK models, Int. J. Mod. Phys. C 8, 763–771ADSCrossRefGoogle Scholar
  13. [13]
    Martys N. S., Chen, H. (1996) Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method, Phys. Rev. E, 53, 743–750ADSCrossRefGoogle Scholar
  14. [14]
    Yang Z. L., Dinh T. N., Nourgaliev R.R. and Sehgal B. R. (2001) Numerical Investigation of bubble growth and detachment by the lattice-Boltzmann method, Int. J. Heat and Mass Transfer 44, 195–206MATHCrossRefGoogle Scholar
  15. [15]
    Shan, X. and Chen, H. (1994) Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation, Phys. Rev. E 49, 2941–2948ADSCrossRefGoogle Scholar
  16. [16]
    Shan X., Doolen G. (1996) Diffusion in a multicomponent lattice Boltzmann equation model, Phys. Rev. E, 54, 3614–3620ADSCrossRefGoogle Scholar
  17. [17]
    Martys N.S. and Douglas J. F. (2001) Critical properties and phase separation in lattice Boltzmann fluid mixtures, Phys. Rev. E 63, 1205–1218ADSCrossRefGoogle Scholar
  18. [18]
    Langaas K. and Grubert D. (1999) Lattice Boltzmann simulations of wetting and its application to disproportionate permeability reducing gels, J. Petr. Sci. Eng. 24, 199–211CrossRefGoogle Scholar
  19. [19]
    Hazlett, R.D. and Vaidya, R.N. (2002) Lattice-Boltzmann simulations and contact angle hysteresis in convergent-divergent media, J. Petrol. Sci. Eng., 20, 167–175CrossRefGoogle Scholar
  20. [20]
    Kedrinskii, V.K. (2002) Relaxation effects and disintegration problems of cavitating liquids at pulse loading, this bookGoogle Scholar
  21. [21]
    Šponer, J. (1990) The Dependence of Cavitation Threshold on Ultrasonic Frequency, Czech. J. Phys. B 40,1123–1132ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • Gábor Házi
    • 1
  • Attila R. Imre
    • 2
  1. 1.Simulator Development DepartmentKFKI Atomic Energy Research InstituteBudapestHungary
  2. 2.Materials DepartmentKFKI Atomic Energy Research InstituteBudapestHungary

Personalised recommendations