Advertisement

Negative Pressure Tail of a Reflected Pressure Pulse: A Lattice Boltzmann Study

  • Gábor Házi
  • Attila R. Imre
Part of the NATO Science Series book series (NAII, volume 84)

Abstract

In this paper, a numerical pressure wave reflection experiment in a two-dimensional liquid is presented. The liquid is simulated by the pseudo-potential extension of the lattice-Boltzmann method. In our experiment a pressure pulse is produced by a point source and the resulting pressure wave is reflected back by a wettable rigid wall. Negative pressure tail can be observed at the vicinity of the wall/liquid interface.

Keywords

Pressure Wave Rarefaction Wave Lattice Boltzmann Equation Linear Collision Operator Negative Pressure Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Kedrinskii, V.K. (1976) Negative pressure profile in cavitation zone at underwater explosion near free surface, Acta Astronautica 3, 623–632CrossRefGoogle Scholar
  2. [2]
    Trevena, D.H. (1987) Cavitation and Tension in Liquids, Adam Hilger, BristolGoogle Scholar
  3. [3]
    Vinogradov V.E. and Pavlov, P.A. (2000) The Bounday of Limiting Superheats of n-Heptane, ethanol, benzene and Toluene in the Region of Negative Pressures, High Temperature 38,379–383CrossRefGoogle Scholar
  4. [4]
    Eisenmenger, W., Köhler, M., Pecha, R. and Wurster, C. (1997) Negative pressure amplitudes in water measured with the fiber optic hydrophone, Prog. Nat. Sci. 7, 499–501Google Scholar
  5. [5]
    Carnell, M.T., Gentry, T.P. and Emmony, D.C. (1998) The generation of negative pressure waves for cavitation studies, Ulrasonics 36, 689–693CrossRefGoogle Scholar
  6. [6]
    Imre, A., Martinás, K., and Rebelo, L.P.N. (1998) Thermodynamics of Negative Pressures in Liquids, J. Non-Equilib. Thermodyn. 23, 351–375ADSMATHCrossRefGoogle Scholar
  7. [7]
    Hazi G., Imre R. A., Mayer G. and Farkas I. (2002) Lattice Boltzmann nethods for two-phase flow modeling, Ann. Nucl. Energy, 29, 1421–1453CrossRefGoogle Scholar
  8. [8]
    Bhatnagar P. L., Gross E. P., Krook M. (1954) A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component systems, Phys. Rev., 94, 511–525ADSMATHCrossRefGoogle Scholar
  9. [9]
    Qian Y.H., d’Humiéres, Lallemand P., (1992) Lattice BGK for Navier-Stokes equation, Europhys. Letters, 17, 479–484ADSMATHCrossRefGoogle Scholar
  10. [10]
    Shan, X., Chen, H. (1993) Lattice Boltzmann model for simulating flows with multiple phases and components, Phys. Rev. E, 47, 1815–1819ADSCrossRefGoogle Scholar
  11. [II]
    Sehgal B. R., Nourgaliev R. R., Dinh T.N. (1999) Numerical simulation of droplet deformation and break-up by lattice-Boltzmann method, Prog. Nucl. Energy, 34, 471–488CrossRefGoogle Scholar
  12. [12]
    Qian Y. H. and Chen S. (1997) Finite size effect in lattice-BGK models, Int. J. Mod. Phys. C 8, 763–771ADSCrossRefGoogle Scholar
  13. [13]
    Martys N. S., Chen, H. (1996) Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method, Phys. Rev. E, 53, 743–750ADSCrossRefGoogle Scholar
  14. [14]
    Yang Z. L., Dinh T. N., Nourgaliev R.R. and Sehgal B. R. (2001) Numerical Investigation of bubble growth and detachment by the lattice-Boltzmann method, Int. J. Heat and Mass Transfer 44, 195–206MATHCrossRefGoogle Scholar
  15. [15]
    Shan, X. and Chen, H. (1994) Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation, Phys. Rev. E 49, 2941–2948ADSCrossRefGoogle Scholar
  16. [16]
    Shan X., Doolen G. (1996) Diffusion in a multicomponent lattice Boltzmann equation model, Phys. Rev. E, 54, 3614–3620ADSCrossRefGoogle Scholar
  17. [17]
    Martys N.S. and Douglas J. F. (2001) Critical properties and phase separation in lattice Boltzmann fluid mixtures, Phys. Rev. E 63, 1205–1218ADSCrossRefGoogle Scholar
  18. [18]
    Langaas K. and Grubert D. (1999) Lattice Boltzmann simulations of wetting and its application to disproportionate permeability reducing gels, J. Petr. Sci. Eng. 24, 199–211CrossRefGoogle Scholar
  19. [19]
    Hazlett, R.D. and Vaidya, R.N. (2002) Lattice-Boltzmann simulations and contact angle hysteresis in convergent-divergent media, J. Petrol. Sci. Eng., 20, 167–175CrossRefGoogle Scholar
  20. [20]
    Kedrinskii, V.K. (2002) Relaxation effects and disintegration problems of cavitating liquids at pulse loading, this bookGoogle Scholar
  21. [21]
    Šponer, J. (1990) The Dependence of Cavitation Threshold on Ultrasonic Frequency, Czech. J. Phys. B 40,1123–1132ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • Gábor Házi
    • 1
  • Attila R. Imre
    • 2
  1. 1.Simulator Development DepartmentKFKI Atomic Energy Research InstituteBudapestHungary
  2. 2.Materials DepartmentKFKI Atomic Energy Research InstituteBudapestHungary

Personalised recommendations