Skip to main content

Measurements of the Cavitation Threshold of Liquids Under Dynamic Stressing by Pulses of Tension

  • Conference paper
  • 349 Accesses

Part of the book series: NATO Science Series ((NAII,volume 84))

Abstract

This paper addresses discrepancies between the results of different measurements of the effective tensile strength F(F c ) of liquids, in experiments in which a pulse of tension (or ’negative pressure’) is created by the reflection of a pressure pulse at a suitable boundary. We show that a key feature of the pressure records previously reported in experiments such as the ‘Bullet-Piston’ (B-P) pulse-reflection apparatus [1] may have been misinterpreted. The first complete account of such pressure records is reported here. We also report a new method of estimating F e in a modified B-P apparatus and the results obtained indicate that samples of degassed, deionised water can sustain tensions which are an order-of-magnitude greater than previously reported in B-P work. Results are also reported for work involving samples of Newtonian silicone oils, for which the dependence of F c on shear viscosity, μ, found in this work confirms that of an earlier study although the absolute values of F c are found to be considerably greater than previously reported.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Temperley, H.N.V., Trevena, D.H. (1987) Why is the tensile strength of water measured dynamically less than that measured staticall, J. Phys. D: Appl Phys., 20, 1080–1081.

    Article  ADS  Google Scholar 

  2. Berthelot M. (1850) Sur quelquesphenomenes de dilation force de liquids, Ann. Chim. Phys., 30, 232–237.

    Google Scholar 

  3. Joseph, D.D. (1998) Cavitation and the state of stress in a flowing liquid, J. Fluid Mech., 366, 367–378.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Zheng, Q., Durben, D. J., Wolf, G.H. and Angell, C. A. (1991) Liquids at large negative pressure: water at the homogeneous nucleation limit, Science, 254, 829–832.

    Article  ADS  Google Scholar 

  5. Green, J. L., Durben, D. J., Wolf, G. H. & Angell, C. A. (1990) Water and solutions at negative pressure: Raman spectroscopic s tudy to — 80 Megapascals, Science, 249, 649–652.

    Article  ADS  Google Scholar 

  6. Roedder, E. (1967) Metastable superheated ice in liquid water inclusions under high negative pressures. Science 155, 1413–1417.

    Article  ADS  Google Scholar 

  7. Marston, P.L. and Unger, B.T. (1986) Rapid cavitation induced by the reflection of shock waves, in Shock Waves in Condensed Matter Plenum, New York 401.

    Chapter  Google Scholar 

  8. Williams, P.R., Williams, P.M. and Brown, S.W.J. (1997) Pressure waves arising from the oscillation of cavitation bubbles under dynamic stressing, J. Phys. D: Appl. Phys., 30, 1197–1206.

    Article  ADS  Google Scholar 

  9. Briggs, L.J. (1950) Limiting negative pressure of water, J. Appl Phys., 21, 721–722.

    Article  ADS  Google Scholar 

  10. Strube, H.W. and Lauterborn, W. (1970) Investigation by the centrifuge method of cavitation nuclei at the interface between glass and water, ZAngew. Phys., 29, 349–357.

    Google Scholar 

  11. Henderson, S.J., Speedy. R.J. (1980) A Berthelot-Bourdon tube method for studying water under tension, J. Phys. E: Sci. Instrum., 13, 778–782.

    Article  ADS  Google Scholar 

  12. Greenspan, M., Tschiegg, C.E. (1967) Radiation-induced acoustic cavitation; apparatus and some results, J. Res. Natl. Bur. Stand. Sect. C 71, 299–312.

    Google Scholar 

  13. Galloway, W.J. (1954) An experimental study of acoustically induced cavitation in liquids, J. Acoust. Soc. Am., 26, 849–857.

    Article  ADS  Google Scholar 

  14. Davies, R.M., Trevena, D.H., Rees, N.J.M. and Lewis, G.M. (1956) The tensile strength of liquids under dynamic stressing. Proceedings of the National Physical Laboratory Symposium on Cavitation in Hydrodynamics. 5, 1–20.

    Google Scholar 

  15. Couzens, D.C.F. and Trevena, D.H. (1969) Critical tension in a liquid under dynamic conditions of stressing, Nature, 222, 473–474.

    Article  ADS  Google Scholar 

  16. Couzens, D.C.F. and Trevena, D.H. (1974) Tensile failure of liquids under dynamic stressing, J. Phys. D: Appl. Phys., 7, 2277–2287.

    Article  ADS  Google Scholar 

  17. Sedgewick, S.A. and Trevena, D.H. (1976) Limiting negative pressure of water under dynamic stressing, J. Phys. D: Appl Phys., 9, 1983–1990.

    Article  ADS  Google Scholar 

  18. Richards, B.E., Trevena, D.H. and Edwards, D.H. (1980) Cavitation experiments using a water shock tube, J. Phys. D: Appl. Phys., 13, 1315–1323.

    Article  ADS  Google Scholar 

  19. Crum, L.A., Fowlkes, J.B. (1986) Acoustic cavitation generated by microsecond pulses of ultrasound, Nature, 319, 52–54.

    Article  ADS  Google Scholar 

  20. Bull, T.H. (1956) The tensile strengths of liquids under dynamic loading, Phil. Mag., 8,153–165.

    Article  ADS  Google Scholar 

  21. Wilson, D. A., Hoyt, J.W. and McKune, J. W. (1975) Measurement of tensile strength of liquids by an explosion technique, Nature, 253, 723–725.

    Article  ADS  Google Scholar 

  22. Alvarenga, A.D., Grimsditch, M. and Bodnar, R.J. (1993) Elastic properties of water under negative pressures. J. Chem. Phys., 98, 8392–8396.

    Article  ADS  Google Scholar 

  23. Fisher, J. C. (1948) The fracture of liquids, J. Appl. Phys., 19, 1062–1067.

    Article  ADS  Google Scholar 

  24. Trevena, D.H. (1982) Time effects in cavitation experiments, J. Phys. D: Appl. Phys., 15, L111–114.

    Article  ADS  Google Scholar 

  25. Trevena, D.H. (1987) Cavitation and Tension in Liquids, Adam Hilger, Bristol.

    Google Scholar 

  26. Rosenschein, U. and Rassin, T. (1998) Ultrasound Thrombolysis, Science and Medicine, 5, 36–43.

    Google Scholar 

  27. Als-Nielsen, J. (1985) The Liquid Vapour Interface, Z. Phys. B, 61, 411–414.

    Article  ADS  Google Scholar 

  28. Bolz, R and Tuve, G. (Eds.) (1973) CRC Handbook of Tables for Applied Engineering Science, 2nd Edn, CRC Press.

    Google Scholar 

  29. Tomita, Y. and Shima, A. (1986) Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse, J. Fluid Mech., 169, 535–564.

    Article  ADS  Google Scholar 

  30. Overton, G. D. N. & Trevena, D. H. (1981) Cavitation phenomena and the occurrence of pressure-tension cycles under dynamic stressing, J.Phys.D: Appl.Phys., 14, 241–250.

    Article  ADS  Google Scholar 

  31. Plessett, M.S. and Prosperetti, A. (1977) Bubble Dynamics and Cavitation, Ann. Rev. Fluid Mech., 9, 145–185.

    Article  ADS  Google Scholar 

  32. Rayleigh, Lord. (1917) On the pressure developed in a liquid during the collapse of a spherical cavity, Phil. Mag., 34, 94–98.

    MATH  Google Scholar 

  33. Williams, P.R. and Williams, P.M. (1996) Pressure-tension cycles induced by dynamic stressing and cavitation in liquids, J.Phys.D: Appl.Phys., 29, 1904–1909.

    Article  ADS  Google Scholar 

  34. Carlson, G.A. and Levine, H.S. (1975) Dynamic tensile strength of glycerol, J.Appl.Phys., 46, 1594–1601.

    Article  ADS  Google Scholar 

  35. Hsieh, D.Y. (1970) Bubble growth in a viscous liquid due to a transient pulse, J. Basic Eng., 92, 815–818.

    Article  Google Scholar 

  36. Fujikawa, S. and Akamatsu, T. (1980) Effects of the non-equilibrium condensation of vapour on the pressure wave produced by the collapse of a bubble in a liquid, J. Fluid Mech., 97, 481–512.

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Williams, P.R., Williams, R.L. (2002). Measurements of the Cavitation Threshold of Liquids Under Dynamic Stressing by Pulses of Tension. In: Imre, A.R., Maris, H.J., Williams, P.R. (eds) Liquids Under Negative Pressure. NATO Science Series, vol 84. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0498-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0498-5_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0896-2

  • Online ISBN: 978-94-010-0498-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics