Skip to main content

Relaxation Effects and Disintegration Problems of Cavitating Liquids at Pulse Loading

  • Conference paper
Liquids Under Negative Pressure

Part of the book series: NATO Science Series ((NAII,volume 84))

Abstract

Paper presents the results of experimental and numerical studies of bubbly cavitation development as well as of tensile stress structure arising in a liquid under dynamic loading.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Besov A.S. et al (1984) Investigation of initial stage of cavitation by diffraction optic method, ed. M. Pichal, Proceedings of International Symposium “Optical Methods in Dynamics of Fluids and Solids”, 129–135, Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  2. Kedrinskii V.K. (1975) Dynamics of cavitation zone at underwater explosion near free surface, Journal of Applied Mechanics and Technical Physics, 5, 68–78.

    Google Scholar 

  3. Kedrinskii V.K. (1976) Negative pressure profile in cavitation zone at underwater explosion near free surface, Acta Astronautica, July-August 3 (7–8), 623-632.

    Article  Google Scholar 

  4. Kedrinskii V.K. (1989) On relaxation of tensile stresses in cavitating liquid, ed. P. Pravica, Proceedings of 13th Int Congress on Acoustics, Belgrade, Yugoslavia, SAVA CENTAR, Novi Beograd, v.1, 327–330.

    Google Scholar 

  5. Kedrinskii V.K. (1978) Surface effects at underwater explosion (review), Journal of Applied Mechanics and Technical Physics, 4, 66–78.

    Google Scholar 

  6. Berngardt A.R. et al (1984) Optic and X-ray Investigation of Water Fracture in Rarefaction Wave at Later Stages, ed. M. Pichal, Proceedings of International Symposium “Optical Methods in Dynamics of Fluids and Solids”, 137–142, Springer-Verlag, Berlin, Heidelberg

    Google Scholar 

  7. Chernobaev N.N. (1989) Modeling of Shock-Wave Loading of Liquid Volumes, eds. G. Meier, Ph Thompson, Proceedings of International Symposium “Adiabatic Waves in Liquid-Vapor Systems”, 361–370, Springer-Verlag, Berlin, Heidelberg

    Google Scholar 

  8. Berngardt A.R., Kedrinskii V.K., PaPchikov E.I. (1995) Evolution of inner structure of liquid fracture zone at pulse loading, Journal of Applied Mechanics and Technical Physics, 2, 99–105.

    Google Scholar 

  9. Kedrinskii V.K., Besov A.S., Gutnik I.E. (1997) Inversion of two-phase state of liquid at pulse loading, Doklady Russian Academy of Sciences, 352(4), 477–479.

    Google Scholar 

  10. Kedrinskii V.K. (1973) The experimental research and hydrodynamic model of “sultan” Archives of Mechanics, 26(3)

    Google Scholar 

  11. Kedrinskii V.K. (1989) Hydrodynamics of Explosion: experiment and models, eds. G. Meier, Ph. Thompson, Proceedings of International Symposium “Adiabatic Waves in Liquid-Vapor Systems”, 395–405, Springer-Verlag, Berlin, Heidelberg

    Google Scholar 

  12. Gavrilov R.L. (1970) Power Ultrasonic Fields, Moscow, Nauka.

    Google Scholar 

  13. Hammitt F.G. et al (1974) Cavitation threshold and superheat in various fluids, Proc. Conf. on Cavitation., Edinburg, 3-5 Sept., 1974. London, N.∼Y.: Mech. Eng. Publ. Ltd.

    Google Scholar 

  14. Sirotyuk M.G. (1968) Experimental study of ultrasound cavitation, Power ultrasonic fields, Moscow, Nauka, (5), 167–220.

    Google Scholar 

  15. Strasberg M. (1956) Undissolved air cavities as cavitation nuclei, Cavitation in Hydrodynamics. London: National Phys. Lab.

    Google Scholar 

  16. Kedrinskii V.K. (1986) On multiplication mechanism of cavitation nuclei, Proceedings, 12th Intern. Congress on Acoustics. Toronto

    Google Scholar 

  17. Kedrinskii V.K., Berngardt A.R., Chernobaev N.N. (1994) Behaviour of a liquid at dynamic loading, eds. S. Morioka, L. Wijngaarden, Proc. IUTAM Symposium on Waves in Liquid/Gas and Liquid/Vapor Two-phase Systems, Kyoto, Japan, Kluwer Ac.Publ., Dordrecht, 429–438.

    Google Scholar 

  18. Kedrinskii V.K. (2000) Hydrodynamics of Explosion: experiments and models, Siberian Branch of the Russian Academy of Sciences Pbl., Novosibirsk

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Kedrinskii, V.K. (2002). Relaxation Effects and Disintegration Problems of Cavitating Liquids at Pulse Loading. In: Imre, A.R., Maris, H.J., Williams, P.R. (eds) Liquids Under Negative Pressure. NATO Science Series, vol 84. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0498-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0498-5_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0896-2

  • Online ISBN: 978-94-010-0498-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics