Quantum Statistics of Metastable Liquid Helium

  • Frédéric Caupin
  • Sébastien Balibar
Conference paper
Part of the NATO Science Series book series (NAII, volume 84)


Experimental studies of homogeneous cavitation give information on the limit of stability of liquids, the “spinodal limit”. The slope of the spinodal line in the (PT) plane has been related to the sign of the isobaric expansion coefficient of the liquid. Using quantum statistics, we give theoretical arguments to explain the existence of a minimum in the spinodal line of liquid helium 3, for which experimental evidence has been reported. The calculations involve the shape of the dispersion curve of collective excitations. We present a similar analysis in the case of superfluid helium 4; we also consider the overpressurized region, and the location of the superfluid transition line in the metastable regions.


Liquid Helium Superfluid Helium Solid Helium Metastable Region Landau Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lambaré, H., Roche, P., Balibar, S., Maris, H.J., Andreeva, O.A., Guthmann, C, Keshishev, K.O., and Rolley, E. (1998) Cavitation in superfluid helium-4 at low temperature, Eur. Phys. J. 2, 381–391.ADSGoogle Scholar
  2. 2.
    Caupin, F. and Balibar, S. (2001) Cavitation pressure in liquid helium, Phys. Rev. B 64, 064507 (1–10).Google Scholar
  3. 3.
    Balibar, S. and Caupin, F. (2002) The limits of stability of liquid helium, this conference, and references therein.Google Scholar
  4. 4.
    Maris, H.J. (1995) Theory of quantum nucleation of bubbles in liquid helium, J. Low Temp. Phys. 98, 403–424.ADSCrossRefGoogle Scholar
  5. 5.
    Guilleumas, M., Barranco, M., Jezek, D.M., Lombard, R.J., and Pi, M. (1996) Quantum cavitation in liquid helium, Phys. Rev. B 54, 16135–16138.ADSCrossRefGoogle Scholar
  6. 6.
    Caupin, F. and Balibar, S. (2000) Search for quantum cavitation in liquid helium 3, Physica B 284-288, 212–213.ADSCrossRefGoogle Scholar
  7. 7.
    Caupin, F., Balibar, S., and Maris, H.J. (2002) Nucleation in a Fermi liquid at negative pressure, J. Low Temp. Phys. 126, 91–96.ADSCrossRefGoogle Scholar
  8. 8.
    Speedy R.J. (1982) Stability-limit conjecture. An interpretation of the properties of water. J. Phys. Chem. 86, 982–991.CrossRefGoogle Scholar
  9. 9.
    Caupin, F., Balibar, S., and Maris, H.J. (2001) Anomaly in the stability limit of liquid helium 3, Phys. Rev. Lett. 87, 145302 (1–4).CrossRefGoogle Scholar
  10. 10.
    Xiong, Q. and Maris, H.J. (1989) Liquid helium at negative pressure: nucleation of bubbles and anomalous phonon dispersion, J. Low Temp. Phys. 77, 347–369.ADSCrossRefGoogle Scholar
  11. 11.
    Guilleumas, M., Pi, M., Barranco, M., Navarro, J., and Soli’s, M.A. (1993) Thermal nucleation of cavities in liquid helium at negative pressures, Phys. Rev. B 47, 9116–9119.ADSCrossRefGoogle Scholar
  12. 12.
    Pettersen, M.S., Balibar, S., and Maris, H.J. (1994) Experimental investigation of cavitation in superfluid 4He, Phys. Rev. B 49, 12062–12070.ADSCrossRefGoogle Scholar
  13. 13.
    The expression of V tobtained in Ref. [12] actually depends on the minimum pressure reached, but we have checked that this does not affect our conclusions.Google Scholar
  14. 14.
    Boghosian, C, Meyer, H., and Rives, J.E. (1966) Density, coefficient of thermal expansion, and entropy of compression of liquid helium-3 under pressure below 1.2 K, Phys. Rev. 146, 110–119.ADSCrossRefGoogle Scholar
  15. 15.
    Maris, H.J. (1994) Nucleation of bubbles on quantized vortices in helium-4, J. Low Temp. Phys. 94, 125–144.ADSCrossRefGoogle Scholar
  16. 16.
    Abraham, B.M., Chung, D., Eckstein, Y., Ketterson, J.B., and Roach, P.R. (1972) Sound propagation, density and viscosity in liquid 3He, J. Low Temp. Phys. 6, 521–528.ADSCrossRefGoogle Scholar
  17. 17.
    Roach RR., Eckstein, Y., Meisel, M.W., and Aniola-Jedrzejek, L. (1983) Thermal expansion, velocity of sound, and compressibility in liquid 3He under pressure, J. Low Temp. Phys. 52, 433–447.ADSCrossRefGoogle Scholar
  18. 18.
    Thermodynamically, the spinodal line is derived from the isothermal sound velocity rather than from the adiabatic one. Both velocities lead to spinodal lines showing a minimum and their difference is less than 30 mbar. We have actually plotted the spinodal obtained with the isothermal data in Fig. 2, and we used it in our discussion.Google Scholar
  19. 19.
    Debenedetti, P.G. (1996) Metastable liquids, Princeton University Press, Princeton, and references therein.Google Scholar
  20. 20.
    Ahlers, G. (1976) Experiments near the superfluid transition in 4He and 3He-4He mixtures, in K.H. Bennemann and J.B. Ketterson (eds.), The physics of liquid and solid helium, John Wiley and Sons, New York, Part I, Chap. 2, 85–206.Google Scholar
  21. 21.
    Lee, D.M., Reppy, J.D., and Fairbank, H.A. (1958) Evidence for a density maximum in liquid He3 near 0.5 K, Bull. Am. Phys. Soc. Ser. II. 3, 339.Google Scholar
  22. 22.
    Brueckner, K.A. and Atkins, K.R. (1958) Coefficient of thermal expansion of liquid He3 near 0.5 K, Phys. Rev. Lett. 1, 315–318.ADSCrossRefGoogle Scholar
  23. 23.
    Landau, L.D. (1956) The theory of a Fermi liquid, Zh. Eksper. Teor. Fiz., 30, 1058–1064 [(1957) Sov. Phys. JETP 3, 920-925].Google Scholar
  24. 24.
    Greywall, D.S. (1986) 3He specific heat and thermometry at millikelvin temperatures, Phys. Rev. B 33, 7520–7538.ADSCrossRefGoogle Scholar
  25. 25.
    Balibar, S., Caupin, F., Roche, P., and Maris, H.J. (1998) Quantum cavitation: a comparison between superfluid helium-4 and normal liquid helium-3, J. Low Temp. Phys. 113, 459–471.ADSCrossRefGoogle Scholar
  26. 26.
    Greywall, D.S. (1983) Specific heat of normal liquid 3He, Phys. Rev. B 27, 2747–2766.ADSCrossRefGoogle Scholar
  27. 27.
    Lifshitz, I.M. and Kagan, Y. (1972) Quantum kinetics of phase transitions at temperatures close to absolute zero, Zh. Eksp. Teor. Fiz. 62, 385–402 [(1972) Sov. Phys. JETP 35, 206-214]. See also Ref. [10].Google Scholar
  28. 28.
    Landau, L.D. (1947) On the theory of superfluidity of helium II, J. Phys. (Mosc.) 11, 91.Google Scholar
  29. 29.
    Wilks, J. (1967) The properties of liquid and solid helium, Clarendon Press, Oxford.Google Scholar
  30. 30.
    Gibbs, M.R., Andersen, K.H., Stirling, W.G., and Schober, H. (1999) The collective excitations of normal and superfluid 4He: the dependence on pressure and temperature, J. Phys.: Condens. Matter 11, 603–628.ADSCrossRefGoogle Scholar
  31. 31.
    Abraham, B.M., Eckstein, Y., Ketterson, J.B., Kuchnir, M., and Roach, P.R. (1970) Velocity of sound, density and Gr üneisen constant in liquid 4He, Phys. Rev. A 1, 250–257.ADSCrossRefGoogle Scholar
  32. 32.
    Atkins, K.R. (1955) Slope of the A curve of liquid helium, Phys. Rev. 98, 319–320.ADSCrossRefGoogle Scholar
  33. 33.
    Dalfovo, F., Lastri, A., Pricaupenko, L., Stringari, S., and Treiner, J. (1995) Structural and dynamical properties of superfluid helium: a density-functional approach, Phys. Rev. B 52, 1193–1209.ADSCrossRefGoogle Scholar
  34. 34.
    Bauer, G.H., Ceperley, D.M., and Goldenfeld, N. (2000) Path-integral Monte Carlo simulation of helium at negative pressures, Phys. Rev. B 61, 9055–9060.ADSCrossRefGoogle Scholar
  35. 35.
    Edwards, D.O. and Maris, H.J. (unpublished).Google Scholar
  36. 36.
    Hall, S.C. and Maris, H.J. (1997) Thermodynamics and nucleation of bubbles in normal and superfluid liquid helium-4 at negative pressures, J. Low Temp. Phys. 107, 263–282.ADSCrossRefGoogle Scholar
  37. 37.
    Atkins, K.R. and Edwards, M.H. (1955) Coefficient of expansion of liquid helium II, Phys. Rev. 97, 1429–1434.ADSCrossRefGoogle Scholar
  38. 38.
    Rybarcyk, L.J. and Tough, J.T. (1981) Superheating in He II and the extension of the lambda line, J. Low Temp. Phys. 43, 197–202.ADSCrossRefGoogle Scholar
  39. 39.
    Nishigaki, K. and Saji, Y. (1986) Superheating in He II and successive phase transitions in metastable states, Phys. Rev. B 33, 1657–1662.ADSCrossRefGoogle Scholar
  40. 40.
    Skripov, V.P. (1994) The metastability boundary in the 4He diagram of state, Zh. Fiz. Kh. 68, 1382–1385 [(1994) Russ. J. Phys. Chem 68, 1252-1255].Google Scholar
  41. 41.
    Campbell, C.E., Folk, R., and Krotscheck, E. (1996) Critical behavior of liquid 4He at negative pressures, J. Low Temp. Phys. 105, 13–36.ADSCrossRefGoogle Scholar
  42. 42.
    Apenko, S.M. (1999) Critical temperature of the superfluid transition in Bose liquids, Phys. Rev. B 60, 3052–3055.ADSCrossRefGoogle Scholar
  43. 43.
    Skripov, V.P. (2000) Extension of the λ curve of 4He into the region of the metastable state of liquid helium, Usp. Fiz. Nauk 170, 559–563 [Phys. Usp. 43, 515-519].CrossRefGoogle Scholar
  44. 44.
    Chavanne, X., Balibar, S., and Caupin, F. (2001) Acoustic nucleation of solid helium 4 on a clean glass plate, J. Low Temp. Phys. 125, 155–164.ADSCrossRefGoogle Scholar
  45. 45.
    Schneider, T. and Enz, C.P. (1971) Theory of the superfluid-solid transition of 4He, Phys. Rev. Lett. 27, 1186–1188.ADSCrossRefGoogle Scholar
  46. 46.
    Notice that, unlike the case of phonons, the curvature of the dispersion curve is accounted for in the usual calculation of pn-rot.Google Scholar
  47. 47.
    Caupin, F. and Fourmond, V. (2002) Ultrasonic cavitation in freon at room temperature, this conference.Google Scholar
  48. 48.
    Caupin, F. and Maris, H.J. (unpublished).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • Frédéric Caupin
    • 1
  • Sébastien Balibar
    • 1
  1. 1.Laboratoire de Physique Statistique de l’Ecole Normale Supérieureassocié aux Universités Paris 6 et Paris 7 et au CNRSParis Cedex 05France

Personalised recommendations