Skip to main content

Radon Studies for Investigation of Nuclear Waste Deposits and Natural Emissions

  • Chapter
Lake Issyk-Kul: Its Natural Environment

Part of the book series: NATO Science Series ((NAIV,volume 13))

  • 286 Accesses

Abstract

In underground repositories for radioactive waste, significant quantities of gases may be generated due to several processes (i.e., corrosion of metals in waste and packaging, radiolysis of water, microbial degradation of various organic waste, etc). These gases may migrate through the engineered barrier system and the natural geological barrier. It is therefore recommended that the potential impact of gas accumulation and migration on the performance of the various barriers should be addressed and assessed in the development of safety cases for radioactive waste repositories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albouy, L. (1981) Unités Allochtones à Neves-Corvo. Somincor Unpublished Report.

    Google Scholar 

  2. Astorri, F., Lombardi, S. and Paoloni, F. (1999) Soil gas investigations over sulphide ore-bearing fractures — the Fontalcinaldo case study (Boccheggiano and Niccioleta mining district — southern Tuscany, Italy), Periodico Mineralogia, 68 (2), 93–108.

    Google Scholar 

  3. Ball, T.K., Crow, M. J., Laffoley, N., Piper, and D. and Ridgway, J. (1990) Application of soil-gas geochemistry to mineral exploration in Africa, J. Geochem. Expl., 38, 103–115.

    Article  CAS  Google Scholar 

  4. Barberi, F. and Innocenti, F. (1967) Le rocce selagitiche di Orciatico e di Montecatini in Val di Cecina, Atti Società Toscana Scienze Naturali Memorie, Serie A, 74, 139–180.

    Google Scholar 

  5. Barnes, I., Irwin, W.P. and White, D.E. (1984) Global distribution of carbon dioxide discharges and major zones of seismicity, Int. Rep. Dept. Int. U.S. Geol Survey.

    Google Scholar 

  6. Barriga, F.J.A.S. and Carvalho, D. (1983) De]Carboniferous volcanogenic sulphide mineralizations in southern Portugal (Iberian Pyrite Belt), in M. J. Lemos de Sousa and J.T. Oliveira (eds), The Carboniferous of Portugal”, Memorias Servicos Geologicos Portugal 29, 99–113.

    Google Scholar 

  7. Bertrami, R., Buonasorte, G., Ceccarelli, ?., Lombardi, S., Pieri, S. and Scandiffio, G. (1990) Soil Gases in Geothermal Prospecting: Two Case Histories (Sabatini Volcanoes and Alban Hills, Latium, Central Italy), J. of Geophysical Research, 95, 21,475–21,481.

    Google Scholar 

  8. Borsi, S., Ferrara, G. and Tongiorgi, E. (1967) Determinazioni con il metodo K/Ar delie età delie rocce magmatiche della Toscana, Boll. Soc. Geol. It., 86, 403–410.

    Google Scholar 

  9. Ciotoli, G., Guerra, M., Lombardi, S. and Vittori, E. (1999) The behaviour of rare soil gases in a seismically active area: the Fucino basin (central Itay), Il Nuovo Cimento, 22, 567–575.

    Google Scholar 

  10. Conticelli, S., Manetti, P. and Menichetti, S. (1992) Mineralogy, geochemistry and Sr-isotopes in orendites from South Tuscany, Italy: constraints on their genesis and evolution, Eur. J. Mineral, 4, 1359–1375

    CAS  Google Scholar 

  11. Duddridge, G.A., Graiger, P. and Durrance, E.M., (1991) Fault detection using soil gas geochemistry Quatern. J. Engin. Geol, 24, 427–435

    Article  Google Scholar 

  12. Etiope, G. and Lombardi, S. (1994) 222Rn soil-gas in sedimentary basins in central Italy: its implications in the radiation protection zoning, Rad. Protect. Dosim., 56/1-4, 231–233.

    Google Scholar 

  13. Fazzini, P., Gelmini, R., Mantovani, M. P. and Pellegrini, M. (1972) Geologia dei Monti della Tolfa, Mem. Soc. Geol It, 65–144.

    Google Scholar 

  14. Ferrara, G., Leoni, L., Sartori, F. and Tonarini, S. (1988) Sr-content and Sr-isotopic composition in contact-metamorphosed argillaceous sediments (Orciatico, Tuscany, Central Italy): relation to fluid circulation, Rendiconti della Società Italiana di Mineralogia e Petrologia, 43, 121–128.

    CAS  Google Scholar 

  15. Follieri, M., Magri, D., Sadori, L. and Villa, I.M. (1991) Palinologia e datazione radiometrica 39Ar/40Ar di un sondaggio nella piana nel Fucino (Abruzzo). Evoluzione dei Bacini Neogenici e Loro Rapporti con il Magmatismo Plio-Quaternario NelVrea Tosco-Laziale, Abstract, 90–92, Workshop, Pisa, June, 12–13.

    Google Scholar 

  16. Galadini, F. and Messina, P. (1994) Plio-Quaternary tectonics of the Fucino basin and surrounding areas (Central Italy), G. Geol, 56/2, 73–99.

    Google Scholar 

  17. Gregory, R.G. and Durrance, E.M. (1985) Helium, carbon dioxide and oxygen soil gases: small-scale variations over fractured ground J. Geochem. Expl., 24/1, 29–49.

    Article  CAS  Google Scholar 

  18. Hermansson, H.P., Akerblom, G., Chyssler, J. and Linden, A. (1991) Geogas, a carrier or a tracer? SKN Report 51.

    Google Scholar 

  19. Ming, V.C. (1933) Migration of oil and natural gas, Inst. Petroleum Technology J., 19, 229–274.

    Google Scholar 

  20. Kristiansson, K. and Malmqvist, L. (1987) Trace elements in geogas and their relation to bedrock composition, Geoexpl, 24, 517–534.

    Article  Google Scholar 

  21. Leca, X., Ribeiro, ?., Oliveira, J.T., Silva, J.B., Albouy, L., Carvalho, P. and Merino, H. (1983) Cadre géologique des minéralisations de Neves-Corvo (Baixo-Alentejo, Portugal). Lithostratigraphie, Paléogéographie et Tectonique, Bureau de Recherches Géologiques et Minières Orléans. Mem B.R.G.M., 21.

    Google Scholar 

  22. Leoni, L., Polizzano, C., Sartori, F. and Sensi, L. (1984) Chemical and mineralogical transformation induced in Pliocene clays by a small subvolcanic body and consequence for the storage of radioactive wastes, N. Jb. Mineral. Mh., 155–168.

    Google Scholar 

  23. Lombardi, G., Nicoletti, M. and Petrucciani, C. (1974) Età délie vulcaniti acide dei complessi Tolfetano, Cerite e Manziate (Lazio nord-occidentale), Per. Mineral, 43, 181–204.

    Google Scholar 

  24. Lombardi, S. and Reimer, G.M. (1990) Radon and Helium in soil gases in the Phlegrean fields, central Italy, Geophysical Research Letters, 17/6, 849–852.

    Article  Google Scholar 

  25. Lovell, J.S. and Hale, M. (1983) Application of soil-air carbon dioxide and oxygen measurement to mineral exploration, Trans. Inst Min. Metall Sect ?, 92, 28–32.

    CAS  Google Scholar 

  26. Malmquist, L. and Kristiansson, K. (1984) Experimental evidence for an ascending microflow of geogas in the ground, Earth Planet Sci. Lett., 70, 407–416.

    Article  Google Scholar 

  27. Malmquist, L. and Kristiansson, K. (1985) A physical mechanism for the release of free gases in the lithosphère, Geoexpl, 23, 447–453.

    Article  Google Scholar 

  28. Masi, U., Ferrini, V., O’Neil, J.R. and Batchelder, J.N. (1980) Stable isotope and fluid inclusion studies of carbonate deposits from the Toifa Mountains Mining district (Latium, Central Italy), Mineralium Deposita, 15, 351–359.

    CAS  Google Scholar 

  29. Mogro-Campero, A. and Fleischer, R.L. (1979) Search for long-distance migration of subsurface radon. The Natural Radioation Environment III, Gesell, Louder, McLaughlin Ed, DOE Conf 780422, Washington.

    Google Scholar 

  30. Muskat, M. (1946) The flow of homogeneous fluids through porous media. J. W. Edwards Inc. — Ann Arbor, Michingan.

    Google Scholar 

  31. Oddone, G. (1915) Gli elementi fisici del grande terremoto marsicano-fucense del 13 gennaio 1915, Boll Soc. Sismol Ital., 19, 71–215.

    Google Scholar 

  32. Pandey, G.N., Rasin Tek, M.,and Katz, D.L. (1974) Diffusion of fluids through porous media with implications in petroleum geology,. The American Association of Petroleum Geologist Bulletin, 58, (2), 291–303.

    Google Scholar 

  33. Patacca, E., Sartori, R. and Scandone, P. (1992) Tyrrhenian Basin and Apenninic arcs: kinematic relations since Late Tortonian times, Mem. Soc. Geol. Ital., 45, 425–451.

    Google Scholar 

  34. Reimer, G.M. (1980) Use of soil-gas helium concentrations for earthquake prediction: limitations imposed by diurnal variation, J. Geophys. Res., 85, 3107–3114.

    Article  CAS  Google Scholar 

  35. Ribeiro, A. and Silva, J.B. (1983) Structure of the South Portuguese Zone, in M. J. Lemos de Sousa and J.T. Oliveira (eds) The Carboniferous of Portugal, Memorias Servicos Geologicos Portugal, 29, 83–89.

    Google Scholar 

  36. Rodolico, F. (1934) Ricerche sulle rocce eruttive recenti delia Toscana, II. Le rocce di Orciatico e di Montecatini in Val di Cecina, Atti Soc. Toscana Sci Nat. Mem., 44, 177–202.

    Google Scholar 

  37. Rose, A.W., Hawkes, H.E. and Webb, J.S. (1989) Geochemistry in mineral exploration, Academic press, London, 657 pp.

    Google Scholar 

  38. Schery, D., Whittlestone, S., Hart, K.P. and Hill, S.E. (1989) The flux of Rn and Th from Australian soils, Journal of Geophysical Research, 94/D6, 8567–8576.

    Article  Google Scholar 

  39. Silva, J.B., Ribeiro, ?., Fonseca, P., Oliveira, J.T., Pereira, Z., Fernandez, J.P., Barriga, F.J.A.S., Relvas, J.M.R.S., Carvalho, P., Ferreira, ?., Beliz, ?., Caetano, P., Pacheco, N. and Albernaz, J. (1997) Tectonostratigraphic overview of Neves-Corvo mine in the context of the Variscan orogeny. SEG-Neves-Corvo Field Conference 1997,.Abstract.

    Google Scholar 

  40. Stefanini, G. (1934) Il complesso eruttivo di Orciatico e Montecatini, provincia di Pisa, Atti Soc. Toscana Sci. Nat. Mem. (A), 44, 224–300.

    Google Scholar 

  41. Varheghy, A., Baranyi, I. and Somogyi, G. (1986) A model for the vertical subsurface radon transport in “geogas” microbubbles, Geoph. Trans., 32/3, 235–253.

    Google Scholar 

  42. Varheghy, A., Hakl, J., Monnin, M., Morin, J.P. and Seidel, J.L. (1992) Experimental study of radon transport in water as a test for a transportation microbubble model, J. Applied Geoph., 29, 37–46.

    Article  Google Scholar 

  43. Washington, H.S. (1900) Some analyses of Italian volcanic rocks, Am J. Sc, 9, 46–48.

    Article  Google Scholar 

  44. Wilkening, M.H., Clements, W.E. and Stanley, D. (1972) 222Rn flux measurements in widely separated regions, in The natural radiation environment 2°, USAEC, VA, 717–730.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Beaubien, S.E., Lombardi, S., Voltattorni, N. (2002). Radon Studies for Investigation of Nuclear Waste Deposits and Natural Emissions. In: Klerkx, J., Imanackunov, B. (eds) Lake Issyk-Kul: Its Natural Environment. NATO Science Series, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0491-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0491-6_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0900-6

  • Online ISBN: 978-94-010-0491-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics