Skip to main content

Latest Trends in the Development of Piezoelectric Multi-Degree-of-Freedom Actuators/Sensors

  • Chapter
Responsive Systems for Active Vibration Control

Part of the book series: NATO Science Series ((NAII,volume 85))

Abstract

The concept of Piezomechanics (Piezoelectricity + Mechanics + Control) describing a complex interaction of dynamic effects and precision-engineered devices is presented. Piezomechanics is considered as part of the more broad philosophy of Mechatronic devices. New structure units of precise mechanisms — active kinematic pairs are described; in them forces or torque are generated in the contact zone between components. A lot of schematics of piezoelectric multi-degree-of-freedom actuators/sensors are presented; they include the actuators with separated power and control systems and actuators, in which transformation of high frequency resonant oscillations into continuous motion is taking place. It is shown that functional ability of the mechanisms can be increased by using hybrid composite systems, made from two or more alternating layers of piezoceramic and magnetostrictive plates or films.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bansevicius, R. and Ragulskis, K. (1981) Vibromotors. Mokslas, Vilnius (in Russian).

    Google Scholar 

  2. Bansevicius, R., Dalay, H., and Knight, J. (1996) Piezomechanics as a Component of Mechatronics, The Intern. Journal ofMechanical Engineering Education 24, 73–87.

    Google Scholar 

  3. Bansevicius, R., Parkin, R., Jebb, A., and Knight, J. (1996) Piezomechanics as a Sub-system of Mechatronics: Present State of the Art, Problems, Future Developments, IEEE Transactions on Industrial Electronics 43, 23–30.

    Article  Google Scholar 

  4. Bansevicius, R., and Ragulskis, K. (1971) Vibrational drive mechanisms for flexible tapes, Proc. 3 rd World Congr. Theory Mach. & Mechanisms. Kupari, Yugoslavia, vol. A, 218–225.

    Google Scholar 

  5. Bansevicius, R. and Milner, J.H. (1994) Transducers, piezoelectric, AIAA J., 364–367.

    Google Scholar 

  6. Bansevicius, R., Baskutis, S., and Sakalauskas, S. (1989) Sensorisierte schwingungskopfe fur koordinatenmessmaschinen zur messung von geometrischer und mechanischer charakteristik der teile, Int. Wiss. Koll. TH Ilmenau, vol. 34.

    Google Scholar 

  7. Bansevicius, R. and Ragulskis, K. (1979) Piezoelectric drives with several degrees of freedom for micromanipulators, Proc. 5 th World Congr. Theory Mach, & Mechanisms. Montreal, Canada, 827–830.

    Google Scholar 

  8. Bansevicius, R., Tolocka, T, and Knight, J. (1995) Adaptive mechanisms: Trends and Some Applications, Mechanika No.1, Technologija, Kaunas, 47–52.

    Google Scholar 

  9. Bansevicius, R., Tolocka, T, and Knight, J. (1995) Intelligent Mechanisms in Mechatronics: Parameters, Design, Application, Proceed. of the 9th World Congress on the Theory of Machines and Mechanisms. Milano, Italy, vol.4, 3053–3057.

    Google Scholar 

  10. Bansevicius, R., Jebb, A., Knight, J., and Parkin, R. (1994) Piezomechanics: a New Sub-system in Mechatronics and its Applications in Precision Mechanics, Proceedings of Joint Hungarian-British International Mechatronics Conference, Budapest, 21–23, September, 361–366.

    Google Scholar 

  11. Chang, S.H. and Wang, H.C. (1990) A high speed impact actuator using multilayer piezoelectric ceramics, Sensors and Actuators (A-Physical) 24, 239–244.

    Article  Google Scholar 

  12. Crawley, E.F. and De Luis, J. (1987) Use of piezoelectric actuators as elements of intelligent structures, AIAA J. 25, 1373–85.

    Article  Google Scholar 

  13. Flynn, A.M., Tavrow, L.S., Bart, S.F., Brooks, R.A., Ehrlich, D.J., Udayakumar, K.R., and Cross, L.E. (1992) Piezoelectric micromotors for microrobots, J. Micromech. Syst. 1, 44–51.

    Article  Google Scholar 

  14. Gotz, B., Martin, T., and Wieduwilt, T. (1994) Optimization of piezoelectric actuators, Actuator ’94 (Proc. 4 th Int. Conf. New Actuators). Axon Technologie Consult GmbH, Bremen, Germany, June 15–17, 123–128.

    Google Scholar 

  15. Harb, S., Smith, S.T., and Chetwynd, D.G. (1992) Subnanometer behavior of a capacitive feedback, piezoelectric displacement actuator, Rev. Sci. Instrum. 63, 1680–1689.

    Article  Google Scholar 

  16. Hellebrand, H., Cramer, D., Probst, L., Wolff, A., and Lubitz, K. (1994) Large piezoelectric monolithic multilayer actuators, Actuator ’94 (Proc. 4 th Int. Conf. New Actuators). Axon Technologie Consult GmbH, Bremen, Germany, June 15–17, 119–122.

    Google Scholar 

  17. Howald, L., Rudin, H., and Guntherodt, H.-J. (1992) Piezoelectric inertial stepping motor with spherical rotor, Rev. Sci. Instrum. 63, 3909–3912.

    Article  Google Scholar 

  18. Jebb, A. and Bansevicius, R. (1991) Actuator/sensor mechanisms for microrobots, Proc. 8 th World Congr. Theory Mach., Mechanisms. Prague, Czechoslovakia, 875–878.

    Google Scholar 

  19. Joshi, S.P. (1991) Non-linear constitutive relations for piezoceramic materials, Proc. ADPA/AIAA/ASME/SPIE Conf. Active Mater. Adaptive Structures. G.J. Knowles, Ed., Alexandria, VA, 217–225.

    Google Scholar 

  20. Knight, J., Bansevicius, R., and Gaivenis, A. (1995) Multi-degree-of-freedom Actuators with High Resolution for Mechatronics Applications, International Journal of Intelligent Mechatronics: Design and Production 1, 61–68.

    Google Scholar 

  21. Koyama, T. and Asada, K. (1991) Design of an arm with double actuators for high speed and high accuracy manipulation, Proc. Amer. Contr. Conf., vol. 2, 1435–1437.

    Google Scholar 

  22. Kurosawa, M. and Ueha, S. (1989) High speed ultrasonic linear motor with high transmission efficiency, Ultrasonics 27, 39–44.

    Article  Google Scholar 

  23. Ozol, O. (1979) Design of Mechanisms, Zvaigzne, Riga (in Russian).

    Google Scholar 

  24. Preumont, A., Dufour, J.-P., and Malkian, C. (1992) Active damping by a local force feedback with piezoelectric actuators, J. Guidance. Contr. Dynamics 15, 390–395.

    Article  Google Scholar 

  25. Ragulskis, K., Bansevicius, R., Barauskas, R., and Kulvietis, G. (1988) Vibromotors for Precision Microrobots. Hemisphere Publishing, ISBN 0-9116054905, New York.

    Google Scholar 

  26. Sashide, T. and Kenjo, T (1993) An Introduction to Ultrasonic Motors, Oxford Science Publ., Clarendon Press.

    Google Scholar 

  27. Smits, J.G. (1991) The effectiveness of a piezoelectric bimorph to perform mechanical work against various spring-type loads, Ferroelec. 120, 241–252.

    Article  Google Scholar 

  28. Toyama, S., Sugitani, S., Zhang Guogiang, Miyatani, Y., and Nakamura, K. (1995) Multi-degree-of-freedom Spherical Ultrasonic Motor, Proceed. of the IEEE Intern. Conf. on Robotics and Automation. vol.3, 2935–2940.

    Google Scholar 

  29. Ueha, S. and Tomikawa, Y. (1993) Ultrasonic Motors. Theory and Applications, Oxford Science Publications, Clarendon Press. Oxford.

    Google Scholar 

  30. Umeda, M., Ohnishi, K., Nakamura, K., Kurosawa, M., and Ueha, S. (1990) Dumbbell-shaped small size hybrid ultrasonic motor, Jpn. J. Appl. Physics 29. pI. I, S29-1, 191–193.

    Article  Google Scholar 

  31. Ushino, K. (1992) Applied aspects of piezoelectricity, Key Eng Mater. 66-67, 331–37.

    Google Scholar 

  32. Wallaschek, J. (1994) Piezoelectric Ultrasonic Motors, Proceed. of the Second Intern. Conf. on Intelligent Materials. ICIM’94, 1279–1290.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bansevičius, R. (2002). Latest Trends in the Development of Piezoelectric Multi-Degree-of-Freedom Actuators/Sensors. In: Preumont, A. (eds) Responsive Systems for Active Vibration Control. NATO Science Series, vol 85. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0483-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0483-1_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0898-6

  • Online ISBN: 978-94-010-0483-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics