An Approach to Smart Structure Design Using MEMS Technology

  • P. Minotti
Part of the NATO Science Series book series (NAII, volume 85)

Abstract

The arrival of integrated circuits with very good performance/price ratios and relatively low-cost microprocessors and memories has had a profound influence on our way of life. In particular, electronic circuits were introduced on a large scale in the measurement and control field, leading to very sophisticated systems and opening new perspectives on active control of structures. However, most of current control systems involve sensors and actuators that were conceived a few decades ago. Accordingly, it becomes necessary to investigate new machining technologies that will allow sensors and actuators to be produced with performance/price ratios which would approach that of modern electronic circuits [1].

Keywords

Fatigue Dust Convection Lithium Torque 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fukuda, T. and Menz, W. (2002) Micro Mechanical Systems: Principles and Technology, Handbook of Sensors and Actuators 6, Elsevier.Google Scholar
  2. 2.
    Angell, J.B., Terry, S.C. and Barth, P.W. (1983) Silicon micromechanical devices, Scientific American Journal 248, 44–55.CrossRefGoogle Scholar
  3. 3.
    Feynman, R.P. (1959) There’s plenty of room at the bottom, American Physical Society Meeting, Pasadena CA. (USA), reprinted in Journal of Microelectromechanical Systems 1, 60–66.CrossRefGoogle Scholar
  4. 4.
    Feynman, R.P. (1983) Infmitesimal machinery, Jet Propulsion Laboratory Meeting, Pasadena CA. (USA), reprinted in Journal of Microelectromechanical Systems 2, 4–14.CrossRefGoogle Scholar
  5. 5.
    Madou, M. (1997) Fundamentals of Microfabrication, CRC Press.Google Scholar
  6. 6.
    Teshiguhara, A., Kawahara, N., Ohtsuka, Y. and Hattori, T., (1995) Performance of a 7mm microfabricated car, Journal of Microelectromechanical Systems 4, 76–80.CrossRefGoogle Scholar
  7. 7.
    Egashira, K., Masuzawa, T., Fujino M. and Sun, X.Q. (1997) Application of USM to micromachining by on-the-machine tool fabrication, International Journal of Electrical Machining 2, 31–36.Google Scholar
  8. 8.
    Masuzawa, T. and Tonshoff, H.K., Three-dimensional micromachining by machine tools, Annals of CIRP 46, 621–628.Google Scholar
  9. 9.
    Becker, E.W., Ehrfeld, W., Hagmann P., Manner A. and Münchmeyer D. (1986) Fabrication of microstructures with high aspect and great structural heights by synchrotron radiation lithography, galvanoforming and plastic moulding (LIGA process), Journal of Microelectronic Engineering 4, 35–36.CrossRefGoogle Scholar
  10. 10.
    Elwenspoek, M. and Wiegerink, R. (2000) Mechanical Microsensors, Springer-Verlag.Google Scholar
  11. 11.
    Kovacs, G.T.A. (1998) Micromachined Transducer Sourcebook, WCB McGraw-Hill.Google Scholar
  12. 12.
    Menz, W. and Bley, P. (1992) Mikrosystemtechnik für Ingenieure, VCH Verlagsgesellschaft mbH.Google Scholar
  13. 13.
    Muller, R.S. (1999) Microactuators, IEEE, A.P. Pisano ISBN: 0780334418.Google Scholar
  14. 14.
    Trimmer, S.T. (1996) Micromechanics and MEMS: Classic and Seminal Papers from 1990, IEEE Press, W.S. Trimmer ISBN: 0879422459.Google Scholar
  15. 15.
    Fan, L.S., Tai, Y.C. and Muller, R.S., (1988) IC-processed electrostatic micromotors, IEEE International Electronic Devices, 666–669.Google Scholar
  16. 16.
    Tai, Y.C., Fan, L.S. and Muller, R.S. (1989) IC-processed micromotors: design, technology and testing, Proceedings IEEE Microelectromechanical Systems 1–6.Google Scholar
  17. 17.
    Krygowski, T.W., Siegowski, J.J., Rodgers, M.S., Montague, S., Allen, J.J., Jakubczak, J.F. and Miller, S.L. (1999) Infrastructure, technology and applications of micro electromechanical systems (MEMS), Sensors Expo., Cleveland (USA).Google Scholar
  18. 18.
    Sniegowski, J.J. (1996) Chemical-mechanical polishing: enhancing the manufacturability of MEMS, SPIE Micromachining and Microfabrication Process Technology, Austin, TX (USA), SPIE Vol. 2879, 104–115.Google Scholar
  19. 19.
    Sniegowski, J.J., de Boer, M.P. (2000) IC-compatible polysilicon surface micromachining, Annu. Rev. Mater. Sci. 30, 299–333.CrossRefGoogle Scholar
  20. 20.
    Michalicek, M.A. (2000) Introduction to microelectromechanical system, MEMS Short Course, Air Force Research Laboratory, Space Vehicles Directorate, New Mexico.Google Scholar
  21. 21.
    Smith, J.H., Montague, S. and Sniegowski, J.J. (1995) Material and processing issues for the monolithic integration of microelectronics with surface-micromachined polysilicon sensors and actuators, SPIE Conference on Micromachining and Microfabrication, Vol. 2639, 64–73.Google Scholar
  22. 22.
    Howe, R. (1995) Polysilicon integrated microsystems: technologies and applications, Proceedings Transducers’ 95, 43–46.Google Scholar
  23. 23.
    Cohn, M.B., Böhringer, K.F., Noworolski, J.M., Singh, A., Keller, C.G., Goldberg, K.Y. and Howe, T.R. (1998) Microassembly technologies for MEMS, SPIE Conference on Micromachined Devices and Components IV, SPIE Vol. 3514, Santa Clara (US) 2–16.Google Scholar
  24. 24.
    Dario, P., Valleggi, R., Carrozza, M.C., Montesi, M.C. and Cocco, M. (1992) Microactuators for microrobots: a critical survey, Journal of Micromechanics and Microengineering, 2, 141–157.CrossRefGoogle Scholar
  25. 25.
    Trimmer, W.S.N. (1989) Microrobots and micromechanical systems, Sensors & Actuators, 19, 267–287.CrossRefGoogle Scholar
  26. 26.
    Fujita, H. and Gabriel, K.J. (1991) New opportunities for microactuators, International Conference on Solid-State Sensors and Actuators, San Francisco, (US) 14–20.Google Scholar
  27. 27.
    Fujita, H. (1997) A decade of MEMS and its future, IEEE Proceedings on Micoelectromechanical Systems, Nagoya (Japan), 1–8.Google Scholar
  28. 28.
    Mehregany, M., Bart, S.F., Tavrow, L.S., Lang, J.H., Senturia, S.D. and Schlecht, M.F. (1990) A study of three microfabricated variable-capacitance motors, Proceedings of the 5 th International Conference on Solid-State Sensors and Actuators, Vol.2, 173–179.Google Scholar
  29. 29.
    Trimmer, W. and Jebens, R. (1989) An operational harmonic electrostatic motor, IEEE Proceedings on Microelectromechanical Systems, 13–16.Google Scholar
  30. 30.
    Jacobsen, S.C., Price, R.H., Wood, J.E., Rytting, T.H. and Rafaelof, M. (1989) The wobble motor: an electrostatic, planetary armature, microactuator, IEEE Proceedings on Microelectromechanical Systems, 17–24.Google Scholar
  31. 31.
    Tang, W.C., Nguyen, T.C. and Howe, R.T. Laterally driven polysilicon resonant microstructures, IEEE Proceedings on Microelectromechanical Systems, 53–59.Google Scholar
  32. 32.
    Sniegowski, J.J. (1996) Multi-level polysilicon surface-micromachining technology:applications and issues, ASME International Mechanical Engineering Congress, Atlanta, GA (USA), Vol. 52, 751–759.Google Scholar
  33. 33.
    Horsley, D.A., Cohn, M.B., Singh, A., Horowitz, R. and Pisano, A. (1998) Design and fabrication of an angular microactuator for magnetic disk drives, Journal of Microelectromechanical Systems 7, 141–148.CrossRefGoogle Scholar
  34. 34.
    Minotti, P., Langlet, P., Bourbon, G. and Masuzawa, T. (1998) Design and characterization of high-torque/low-speed silicon-based electrostatic micromotors using stator/rotor contact interactions, Japanese Journal of Applied Physics, 37, 359–361.CrossRefGoogle Scholar
  35. 35.
    Minotti, P. and Le Moal, P. (2002) Evolutions récentes des lois de design des microactionneurs électrostatiques, Traité EGEM Microactionneurs electroactifs, Hermés-Lavoisier, 109–147.Google Scholar
  36. 36.
    Le Moal, P., Minotti, P., Bourbon, G. and Joseph, E. (2001) On-chip investigation of torque/speed characteristics on new high-torque micrometer-size polysilicon electrostatic actuators, Japanese Journal of Applied Physics, 40, 596–599.CrossRefGoogle Scholar
  37. 37.
    Walter, V., Le Moal, P., Minotti, P., Joseph, E. and Bourbon, G. (2002) Investigation of output mechanical power limits on high-torque electrostatic actuators using highfrequency CMOS camera combined with image processing software, Japanese Journal of Applied Physics, 41, 424–427.CrossRefGoogle Scholar
  38. 38.
    Minotti, P., Langlet, P., Bourbon, G., Masuzawa, T. and P. Le Moal (1998) Directdrive electrostatic micromotors using flexible polysilicon rotors, Journal of Intelligent Material Systems and Structures, 9, 829–836.CrossRefGoogle Scholar
  39. 39.
    Minotti, P., Bourbon, G., Langlet, P. and Masuzawa, T. (1998) Arrayed electrostatic scratch drive actuators: toward visible effects up to the human scale, Journal of Intelligent Material Systems and Structures, 9, 837–846.CrossRefGoogle Scholar
  40. 40.
    Minotti, P., Bourbon, G., Langlet, P. and Masuzawa, T. (1998) New cylindrical electrostatic micromotors using tubular combination of arrayed direct-drive actuators, Japanese Journal of Applied Physics, 37, 622–625.CrossRefGoogle Scholar
  41. 41.
    Minotti, P., Le Moal, P., Joseph, E and Bourbon, G. (2001) Toward standard method for MEMS material measurement through on-chip electrostatic probing of micrometer size polysilicon tensile specimens, Japanese Journal of Applied Physics, 40, 120–122.CrossRefGoogle Scholar
  42. 42.
    Berlin, A.A. (1997) MEMS based active control of macro-scale objects, Semiannual Technical Progress Report n° DABT63-95-C-0025, Defense Advanced Research Project Agency.Google Scholar
  43. 43.
    Temesvary, V., Wu, S., Hsiech, W.H., Tai, Y.C. and Miu, D.K. (1995) Design, fabrication and testing of silicon microgimbals for super-compact rigid disk drives, Journal of Microelectromechanical Systems, 4, 18–26.CrossRefGoogle Scholar
  44. 44.
    Fujita, H. (1996) Future of actuators and microsystems, Sensors & Actuators A, 56, 105–111.CrossRefGoogle Scholar
  45. 45.
    Fujita, H., Ataka, M. and Konishi, S. (1996) Group work of distributed microactuators, Robotica, 14, 487–492.CrossRefGoogle Scholar
  46. 46.
    Ataka, M., Omokada, A., Takeshima, N. and Fujita, H. (1993) Polyimide bimorph actuators for a ciliary motion system, Journal of Microelectromechanical Systems 2, 146–150.CrossRefGoogle Scholar
  47. 47.
    Konishi, S. and Fujita, H. (1994) A conveyence system using air flow based on the concept of distributed micro motion systems, Journal of Microelectromechanical Systems 3, 54–58.CrossRefGoogle Scholar
  48. 48.
    Böhringer, K.F., Donald, B.R., Mihailovich, R. and Macdonald, N.C. (1994) A theory of manipulation and control for microfabricated actuator arrays, Proceedings on Microelectromechanical Systems, Oiso (Japan), 102–107.Google Scholar
  49. 49.
    Bourbon, G., Minotti, P., Helin, P. and Fujita, H. (1999) Toward smart surfaces using high-density arrays of silicon-based mechanical oscillators, Journal of Intelligent Material Systems and Structures, 10, 534–540.CrossRefGoogle Scholar
  50. 50.
    Böhringer, K.F., Donald, B.R., Mihailovich, R. and Macdonald, N.C. (1994) Sensorless manipulation using massively parallel microfabricated actuator arrays, Proceedings of IEEE International Conference on Robotics and Automation, San Diego (US), 826–833.Google Scholar
  51. 51.
    Suh, J.W., Darling, R.B., Böhringer, K.F., Donald, B.R., Baltes, H. and Kovacs, G.T.A. (1999) CMOS integrated ciliary actuator array as a general purpose micromanipulation tool for small objects, Journal of Microelectromechanical Systems 8, 483–496.CrossRefGoogle Scholar
  52. 52.
    Whitehead, L.A. and Bolleman, B.J. (1995) Microstructured elastomeric electromechanical film transducer, Journal of Acoustical Society of America, 103, 389–395.CrossRefGoogle Scholar
  53. 53.
    Collet, M. and Minotti, P. (2001) Toward acoustical impedance control of vibrating walls using silicon-based active skin, Proceedings of the 5 th SIAM Conference on Control and its Applications, San Diego (US), P. 241.Google Scholar
  54. 54.
    Neumann, J.J. and Gabriel, K.J. (2002) CMOS-MEMS membrane for audio-frequency acoustic actuation, Sensors & Actuators A, 95, 175–182.CrossRefGoogle Scholar
  55. 55.
    McMichael, J.M. and Francis, M.S. (1997) Micro air vehicles: toward a new dimension in flight, http://www.darpa.mil/tto/mav Google Scholar
  56. 56.
    Fearing, R.S., Chiang, K.H., Dickinson, M.H., Pick, D.L., Sitti, M. and Yan, J. (2000) Wing transmission for a micromechanical flying insect, Proceedings of IEEE International Conference on Robotics and Automation, San Francisco (US), 1509–1516.Google Scholar
  57. 57.
    Pomsin-sirirak, T.N., Lee, S.W., Nassef, H., Grasmeyer, J., Tai, Y.C., Ho, C.M. and Keennon, M. (2000), 13th IEEE International Cotiference on Microelectromechanical Systems, Miyazaki (Japan), 799–804.Google Scholar
  58. 58.
    Azuma, A. (1992) The biokinetics of flying and swimming, Springer Verlag-Tokyo.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • P. Minotti
    • 1
  1. 1.Institut des Microtechniques de Franche Comté, Laboratoire de Mécanique Appliquée R. ChaléatUniversité de Franche ComtéBesançon CedexFrance

Personalised recommendations