Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 85))

Abstract

In order to motivate the use of active vibration control, consider the future interferometric missions planned by NASA or ESA (one such a mission, called “Terrestrial Planet Finder” aims at detecting earth-sized planets outside the solar system; other missions include the mapping of the sky with an accuracy one order better than that achieved by Hypparcos).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achkire, Y. (1997). Active Tendon Control of Cable-Stayed Bridges. Ph.D. thesis, Active Structures Laboratory, Université Libre de Bruxelles, Belgium.

    Google Scholar 

  2. Achkire, Y. and Preumont, A. (1996). Active tendon control of cable-stayed bridges. Earthquake Engineering and Structural Dynamics, vol. 25(6), 585–597.

    Article  Google Scholar 

  3. Agarwal, B. D. and Broutman, L. J. (1990). Analysis and Performance of Fiber Composites. Wiley, second edn.

    Google Scholar 

  4. Anderson, E. H., Moore, D. M., Fanson, J. L. and Ealey, M. A. (1990). Development of an active member using piezoelectric and electrostrictive actuation for control of precision structures. SDM Conference, AIAA paper 90-1085-CP.

    Google Scholar 

  5. Aubrun, J. N. (1980). Theory of the control of structures by low-authority controllers. AIAA J. of Guidance, vol. 3(5), 444–451.

    Article  MathSciNet  MATH  Google Scholar 

  6. Balas, M. J. (1979). Direct velocity feedback control of large space structures. AIAA J. of Guidance, vol. 2(3), 252–253.

    Article  MathSciNet  Google Scholar 

  7. Bossens, F. (2001). Amortissement Actif Des Structures Cablees: De la Theorie a L’implementation. Ph.D. thesis, Université Libre de Bruxelles, Active Structures Laboratory.

    Google Scholar 

  8. Bossens, F. and Preumont, A. (2001). Active tendon control of cable-stayed bridges: A large-scale demonstration. Earthquake Engineering and Structural Dynamics, vol. 30, 961–979.

    Article  Google Scholar 

  9. Chalasani, R M. (1984). Ride performance potential of active suspension systems, part1: Simplified analysis based on a quarter-car model. ASME Symposium on Simulation and Control of Ground vehicles and Transportation systems, Anaheim, CA.

    Google Scholar 

  10. Chen, G., Lurie, B. and Wada, B. (1989). Experimental studies of adaptive structure for precision performance. Proceedings of the 30th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference, AIAA, Washington DC, pp. 1462–1472.

    Google Scholar 

  11. Fanson, J. L., Blackwood, G. H. and Chen, C. C. (1989). Active member control of precision structures. SDM Conference, AIAA paper 89-1329-CP.

    Google Scholar 

  12. Fanson, J. L. and Caughey, T. K. (1990). Positive position feedback control for large space structures. AIAA Journal, vol. 28(4), 717–724.

    Google Scholar 

  13. Forward, R L. (1981). Electronic damping of orthogonal bending modes in a cylindrical mast experiment. AIAA Journal of Spacecraft, vol. 18(1), 11–17.

    Google Scholar 

  14. Fuller, C. R, Elliott, S. J. and Nelson, P. A. (1996). Active Control of Vibration. Academic Press.

    Google Scholar 

  15. Geng, Z. J. and Haynes, L. S. (1994). Six degree-of-freedom active vibration control using the stewart platforms. IEEE Transactions on Control Systems Technology, vol. 2(1), 45–53.

    Article  Google Scholar 

  16. Goh, C. and Caughey, T. K. (1985). On the stability problem caused by finite actuator dynamics in the control of large space structures. Int. J. of Control, vol. 41(3), 787–802.

    Article  MathSciNet  MATH  Google Scholar 

  17. Kaplow, C. E. and Velman, J. R (1980). Active local vibration isolation applied to a flexible space telescope. AIAA J. Guidance and Control, vol. 3(3), 227–233.

    Article  Google Scholar 

  18. Karnopp, D. C. and Trikha, A. K. (1969). Comparative study of optimization techniques for shock and vibration isolation. Trans. ASME, Journal of Engineering for Industry, series B, vol. 91(4), 1128–1132.

    Article  Google Scholar 

  19. Lee, C.-K. (1990). Theory of laminated piezoelectric plates for the design of distributed Sensors/ Actuators-Part I: Governing equations and reciprocal relationships. J. Acoust.-Soc. Am, vol. 87(3), 1144–1158.

    Article  Google Scholar 

  20. Lee, C.-K. and Moon, F. C. (1990). Modal sensors/actuators. Trans. ASME, J. of Applied Mechanics, vol. 57, 434–441.

    Article  Google Scholar 

  21. Mc Inroy, J. E., Neat, G. W. and O’Brien, J. F. (1999). A robotic approach to fault-tolerant, precision pointing. IEEE Robotics & Automation Magazine, pp. 24–31.

    Google Scholar 

  22. Neat, G., Abramovici, A., Melody, J., Calvet, R., Nerheim, N. and O’Brien, J. (1997). Control technology readiness for spaceborne optical interferometer missions. Proceedings SMACS-2, Toulouse, pp. 13–32.

    Google Scholar 

  23. Nelson, P. A. and Elliott, S. J. (1992). Active Control of Sound. Academic Press.

    Google Scholar 

  24. Piefort, V. (2001). Finite Element Modeling of Piezoelectric Active Structures. Ph.D. thesis, Université Libre de Bruxelles, Active Structures Laboratory.

    Google Scholar 

  25. Preumont, A. (1997). Vibration Control of Active Structures, An Introduction. Kluwer Academic Publishers.

    Google Scholar 

  26. Preumont, A. and Achkire, Y. (1997). Active damping of structures with guy cables. AIAA, J. of Guidance, Control, and Dynamics, vol. 20(2), 320–326.

    Article  MATH  Google Scholar 

  27. Preumont, A., Achkire, Y. and Bossens, F. (2000). Active tendon control of large trusses. AIAA Journal, vol. 38(3), 493–498.

    Article  Google Scholar 

  28. Preumont, A. and Bossens, F. (2000). Active tendon control of vibration of truss structures: Theory and experiments. Journal of Intelligent Material Systems and Structures, vol. 11(2), 91–99.

    Google Scholar 

  29. Preumont, A., Dufour, J. P. and Malekian, C. (1992). Active damping by a local force feedback with piezoelectric actuators. AIAA J. of Guidance, vol. 15(2), 390–395.

    Article  Google Scholar 

  30. Preumont, A., Francois, A., Bossens, F. and Abu-Hanieh, A. (Accepted for publication in 2001). Force feedback versus acceleration feedback implementation in active vibration isolation. Journal of Sound and Vibration.

    Google Scholar 

  31. Preumont, A., Francois, A., De Man, P. and Loix, N. (2002). A novel electrode concept for spatial filtering with piezoelectric films. In Active 2002. Southampton.

    Google Scholar 

  32. Preumont, A., Loix, N., Malaise, D. and Lecrenier, O. (1993). Active damping of optical test benches with acceleration feedback. Machine Vibration, vol. 2, 119–124.

    Google Scholar 

  33. Rahman, Z., Spanos, J. and Laskin, R. (1998). Multi-axis vibration isolation, suppression and steering system for space observational applications. In SPIE International Symposium on Astronomical Telescopes and Instrumentation. Kona, Hawaii. Paper no. 3351-44.

    Google Scholar 

  34. Sim, E. and Lee, S. W. (1993). Active vibration control of flexible structures with acceleration or combined feedback. AIAA J. of Guidance, vol. 16(2), 413–415.

    Article  Google Scholar 

  35. Spanos, J., Rahman, Z. and Blackwood, G. (1995). A soft 6-axis active vibration isolator. Proceedings of the American Control Conference, Seattle, WA, pp. 412–416.

    Google Scholar 

  36. Thayer, D., Campell, M., Vagner, J. and Von Flotow, A. (2002). Six-axis vibration isolation system using soft actuators and multiple sensors. Journal of Spacecraft and Rockets, vol. 39(2).

    Google Scholar 

  37. Thayer, D., Vagners, J., Von Flotow, A., Hardham, C. and Scribner, K. (1998). Six-axis vibration isolation system using soft actuators and multiple sensors. Proc. of Annual American Astronautical Society Rocky Mountain Guidance and Control Conference (AAS-98-064), pp. 497–506.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Preumont, A. (2002). An Introduction to Active Vibration Control. In: Preumont, A. (eds) Responsive Systems for Active Vibration Control. NATO Science Series, vol 85. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0483-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0483-1_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0898-6

  • Online ISBN: 978-94-010-0483-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics