Hydrogeological Issues of Riverbank Filtration — A Review

  • Eduard Hoehn
Part of the NATO Science Series book series (NAIV, volume 14)


Engineers and scientists are faced with the problem of the behavior and fate of contaminants during the infiltration of river waters to groundwater. Sontheimer [1], e.g., found that induced bank filtration resulted in the elimination of some of the contaminants and could thus be considered as the first treatment step for the production of drinking water from river water. If rivers that naturally lose water to aquifers are contaminated, e.g., from outlets of sewage treatment plants, then the groundwater may become contaminated, too (e.g., Schwarzenbach et al. [2]). The quality of the water, which is freshly infiltrated from the river, revealed to be strongly dependent on the residence time and the mixing rate of river water and deeper groundwater. In a few infiltration systems, some contaminant compounds could partly be eliminated from the aquatic environment, and the quality of river water has somewhat improved (e.g., von Gunten and Lienert [3]). Today’s concerns are broader than looking at the water quality. The state of the groundwater/surface water ecosystem and its evolution in the future is of interest. In many floodplains, the state of riverbeds and banks is far from being natural (e.g., Brunke and Gonser [4]; Bencala [5]). Various forms of land use, such as hydropower generation, flood prevention, or the need of arable land, require a safe and defined bank line and a channeled riverbed. These requirements are in conflict with the needs of the vegetation and animals at the bank and in the bed of rivers (riparian zone).


Hydraulic Conductivity River Water Groundwater Flow Ground Penetrate Radar Radon Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sontheimer, H. (1980) Experience with riverbank filtration along the Rhine River, J. Amer. Wat. Works Assoc. 72: 386–390.Google Scholar
  2. 2.
    Schwarzenbach, R.P., Giger, W., Hoehn, E., and Schneider, J. (1983) Behavior of organic compounds during infiltration of river water to groundwater: Field studies, Environ. Sci. Technol. 17(8): 472–479.CrossRefGoogle Scholar
  3. 3.
    von Gunten, H.R., and Lienert, Ch. (1993), Decreased metal concentrations in ground water caused by controls of phosphate emissions, Nature 364: 220–222.CrossRefGoogle Scholar
  4. 4.
    Brunke, M., and Gonser, T. (1997) The ecological significance of exchange processes between rivers and groundwater, Freshwater Biol. 37: 1–33.CrossRefGoogle Scholar
  5. 5.
    Bencala, K.E. (1993) A perspective on stream-catchment connections, J. N. Am. Benthol. Soc. 12(1): 44–47.CrossRefGoogle Scholar
  6. 6.
    Tolson, J.S., and Doyle, F.L., eds. (1977) Karst Hydrogeology, Mem. Int. Assoc. Hydrogeol., vol. XII, UAH Press, Univ. of Alabama, Huntsville, Ala., U.S.A.Google Scholar
  7. 7.
    Huggenberger, P., Hoehn, E., Beschta, R., and Woessner, W.W. (1998) Groundwater control on riparian/fluvial systems, in Riparian Groundwater Ecology, edited by J. J. Ward, J. Stanford, and T. Gonser. Freshwater Biol. 40: 407–425.CrossRefGoogle Scholar
  8. 8.
    Anderson, M.P. (1989) Hydrogeologic facies models to delineate large-scale spatial trends in glacial and glaciofluvial sediments, Geol. Soc. Am. Bull. 101: 501–511.CrossRefGoogle Scholar
  9. 9.
    Webb, E.K. (1994) Simulating the three-dimensional distributions of sediment units in braided-stream deposits, J. Sediment. Res. 64: 219–231.Google Scholar
  10. 10.
    Bear, J. (1972) Dynamics of Fluids in Porous Media, Elsevier, New York.Google Scholar
  11. 11.
    Jäckli, H. (1974) Grundwasser und Oberflächengewässer in ihren gegenseitigen Beziehungen (Exchange of groundwaters and surface waters), Jber. u. Mitt. oberrhein. Geol. Ver. 56: 125–143.Google Scholar
  12. 12.
    Woessner, W.W. (1992) Stream and fluvial plain ground water interactions: Rescaling hydrogeological thought, Ground Water 38(3): 423–429.CrossRefGoogle Scholar
  13. 13.
    Jancarkova, I., Larsen, T.A. and Gujer, W. (1997) Distribution of nitrifying bacteria in a shallow stream, Water Sci. Technol. 36(8-9): 161–166.CrossRefGoogle Scholar
  14. 14.
    Hoehn, E., and von Gunten, H.R. (1989) Radon in Groundwater: A tool to assess infiltration from surface waters to aquifers, Water Resour. Res. 25(8): 1795–1803.CrossRefGoogle Scholar
  15. 15.
    Stanford, J.A., Ward, J.V., and Ellis, B.K. (1994) Ecology of the alluvial aquifers of the Flathead River, Montana, in Groundwater Ecology, edited by J. Gibert, D.L. Danielopol, and J.A. Stanford, Academic Press.Google Scholar
  16. 16.
    Constantz, J., Thomas, C.L., and Zellweger, G.W. (1994) Influence of diurnal variations in stream temperature on streamflow loss and groundwater recharge, Water Resour. Res. 30: 3253–3264.CrossRefGoogle Scholar
  17. 17.
    Hamada, H., and Komae, T. (1998) Analysis of recharge by paddy field irrigation using Rn-222 concentration in groundwater as an indicator, J. Hydrol. 105(1-2): 92–100.CrossRefGoogle Scholar
  18. 18.
    Hoehn, E., and Kiefer, B. (1992) Ausbau der Wasserkräfte im oberen Puschlav; Untersuchungen zur Umweltverträglichkeit: Projektorganisation und hydrogeologische Ergebnisse (Hydropower exploration in the upper Poschiavo Valley, Grisons, Switzerland: Project organization and results of hydrogeological investigations). Mitt. Schweiz. Ges. f. Boden- und Felsmechanik 125: 35–42.Google Scholar
  19. 19.
    Hoehn, E., Gonser, T., Hohmann, D., and Stierli, R. (2001) Erkennen von Grundwasser-Lebensräumen in Auengebieten mit Radon als Tracer, EAWAG-News 52D: 18–19.Google Scholar
  20. 20.
    Hoehn, E., and Santschi, P.H. (1987) Interpretation of tracer displacement during infiltration of river water to groundwater, Water Resour. Res. 23(4): 633–640.CrossRefGoogle Scholar
  21. 21.
    Hoehn, E. (1979) Hydrogeologische Untersuchungen im Gebiet westlich von Frick (Aargauer Tafeljura), Beitr. z. Geol. Schweiz - Hydrol. 26.Google Scholar
  22. 22.
    Muchenberger, F. (1979) Abflussmessungen in Oberflächengewässern für Grundwasserbilanzierungen, Gas-Wasser-Abwasser 59(9): 401–407.Google Scholar
  23. 23.
    Harvey, J.W., Wagner, B.J., and Bencala, K.E. (1996) Evaluating the reliability of the stream tracer approach to characterize stream-subsurface water exchange, Water Re sour. Res. 32(8): 2441–2451.CrossRefGoogle Scholar
  24. 24.
    Bertin, C., and Bourg, A.C.M. (1992) Radon-222 and chloride as natural tracers of the infiltration of river water into an alluvial aquifer in which there is significant river/groundwater mixing, Environ. Sci. Technol. 28(5): 794–798.CrossRefGoogle Scholar
  25. 25.
    Schälchli, U. (1993) Die Kolmation von Fliessgewässersohlen: Prozesse und Berechnungsgrundlagen (Clogging of River Beds: Processes and Theory), Ph.D. thesis, ETH Diss. Nr. 10293, Swiss Fed. Inst. of Technol., Zurich, Switzerland.Google Scholar
  26. 26.
    Huggenberger, P. (1993) Radar facies. Recognition of facies patterns and heterogeneities within Pleistocene Rhine gravels, Switzerland, in Braided Rivers: Form, Process and Economic Application, edited by J.L. Best and C.S. Bristow, Geol. Soc. Spec. Publ. 75.Google Scholar
  27. 27.
    Mattle, N., Kinzelbach, W., Beyerle, U., Huggenberger, P., and Loosli, H.H. (2001) Exploring an aquifer system by integrating hydraulic, hydrogeologic and environmental tracer data in a three-dimensional hydrodynamic transport model, J. Hydrol. 242: 183–196.CrossRefGoogle Scholar
  28. 28.
    Fry, V.A., Istok, J.D., Semprini, L., O’Reilly, K.T., and Buschek, T.E. (1995) Retardation of dissolved oxygen due to a trapped gas phase in porous media, Ground Water 33(3): 391–398.CrossRefGoogle Scholar
  29. 29.
    Olschewski, A., Fischer, U., Hofer, M., and Schulin, (R. 1995) Sulfur hexafluoride as a gas tracer in soil venting operations, Environ. Sci. Technol. 29(1): 264–266.CrossRefGoogle Scholar
  30. 30.
    Levenspiel, O. (1999) Chemical Reactor Engineering (third edition), John Wiley & Sons, New York, U.S.A.Google Scholar
  31. 31.
    Roberts, P.V., McCarty, P.L., and Roman, W.M. (1978) Direct injection of reclaimed water into an aquifer, J. Environ. Eng. Div. EE5: 933–949.Google Scholar
  32. 32.
    Schlosser, P., Stute, M., Sonntag, C., and Münnich, K.O. (1989) Tritiogenic 3He in shallow ground water, Earth Planet. Sci. Lett. 94: 245–256.CrossRefGoogle Scholar
  33. 33.
    Beyerle, U., Aeschbach-Hertig, W., Hofer, M., Imboden, D.M., Baur, H., and Kipfer, R. (1999) Infiltration of river water to a shallow aquifer investigated with 3H/3He, noble gases and CFCs, J. Hydrol. 220: 169–185.CrossRefGoogle Scholar
  34. 34.
    Brunke, M., and Gonser, T. (1999) Hyporheic invertebrates - the clinal nature of interstitial communities structured by hydrological exchange and environmental gradients, J. N. Am. Benthol. Soc. 18(3): 344–362.CrossRefGoogle Scholar
  35. 35.
    de Marsily, Gh. (1986) Quantitative Hydrogeology, Academic Press, Orlando, Florida, U.S.A.Google Scholar
  36. 36.
    Bonnard, E., Karagounis, I., Kempf, Th., and Walter, U. (1991) Abkühlung des Grundwassers durch Wärmenutzung, Gas-Wasser-Abwasser 71(1-3): 5–36.Google Scholar
  37. 37.
    McKnight, D.M., and Bencala, K.E. (1988) Diel variations in iron chemistry in an acidic stream in the Colorado Rocky Mountains, U.S.A., Arctic & Alpine Res. 20(4): 492–500.CrossRefGoogle Scholar
  38. 38.
    Bencala, K.E., Jackman, A.P., Kennedy, V.C., Avanzino, R.J., and Zellweger, G.W. (1983) Kinetic analysis of strontium and potassium sorption onto sands and gravels in a natural channel, Water Resour. Res. 19(3): 725–731.CrossRefGoogle Scholar
  39. 39.
    Bencala, K.E., Duff, J.H., Harvey, J.W., Jackman, A.P., and Triska, F.J. (1993) Modelling within the stream-catchment continuum, in Modelling Change in Environmental Systems, edited by A.J. Jakeman et al., 164–187, John Wiley & Sons, Chichester, West Sussex, England.Google Scholar
  40. 40.
    Zobrist, J., Davis, J.S., and Hegi, H.R. (1976) Charakterisierung des chemischen Zustandes des Flusses Glatt, Gas-Wasser-Abwasser 784: 1–20.Google Scholar
  41. 41.
    Freimoser, M., and Locher, Th. (1980) Gedanken zur pleistozänen Landschaftsgeschichte im nördlichen Teil des Kantons Zürich aufgrund hydrogeologischer Untersuchungen, Eclogae Geol. Helv. 73(1): 251–270.Google Scholar
  42. 42.
    Giger, W., Schwarzenbach, R.P., Hoehn, E., Schellenberg, K., Schneider, J.K., Wasmer, H.R., Westall, J., and Zobrist, J. (1983) Das Verhalten organischer Wasserinhaltsstoffe bei der Grundwasserbildung und im Grundwasser, Gas-Wasser-Abwasser 63(9): 517–532.Google Scholar
  43. 43.
    Hoehn, E., Schwarzenbach, R., and Zobrist, J. (1983) Infiltration von Flusswasser ins Grundwasser -hydrogeologische und hydrochemische Untersuchungen im Glattal, Gas-Wasser-Abwasser 63(8): 401–410.Google Scholar
  44. 44.
    Gujer, W., Krejci, V., Schwarzenbach, R., and Zobrist, J. (1982) Von der Kanalisation ins Grundwasser - Charakterisierung eines Regenereignisses im Glattal, Gas-Wasser-Abwasser 62(7): 298–311.Google Scholar
  45. 45.
    Drost, W., and Hoehn, E. (1989) Macrodispersivity in granular aquifers determined with single-well techniques using Br-82 as a tracer, Radiochim. Acta 47: 13–20.Google Scholar
  46. 46.
    Santschi, P.H., Hoehn, E., Lück, A., and Farrenkothen, K. (1987) Tritium as a tracer for the movement of surface water and groundwater in the Glatt valley, Switzerland, Environ. Sci. Technol. 21(9): 909–916.CrossRefGoogle Scholar
  47. 47.
    Schwarzenbach, R.P., and Westall, J. (1981) Transport of nonpolar organic compounds from surface water to groundwater. Laboratory sorption studies, Environ. Sci. Technol. 15(11): 1060–1067.CrossRefGoogle Scholar
  48. 48.
    Kuhn, E., Colberg, P.J., Schnoor, J.L., Wanner, O., Zehnder, A.J.B., and Schwarzenbach, R.P. (1985) Microbial transformations of substituted benzenes during infiltration of river water to groundwater: Laboratory column studies, Environ. Sci. Technol. 19(10): 961–968.CrossRefGoogle Scholar
  49. 49.
    Kuhn, E., van Loosdrecht, M., Giger, W., and Schwarzenbach, R.P. (1987) Microbial degradation of nitrilotriacetate (NTA) during river water /groundwater infiltration: Laboratory column studies, Water Res. 21(10): 1237–1248.CrossRefGoogle Scholar
  50. 50.
    Ahel, M., Schaffner, Ch., and Giger, W. (1996) Behaviour of alkylphenol polyethoxylate surfactants in the aquatic environment - III. Occurrence and elimination of their persistent metabolites during infiltration of river water to groundwater, Water Res. 30(1): 37–46.CrossRefGoogle Scholar
  51. 51.
    McFeters, G.A., Egli, T., Wilberg, E., Alder, A., Schneider, R., Snozzi, M., and Giger, W. (1990) Activity and adaptation of nitriloacetate (NTA)-degrading bacteria: Field and laboratory studies, Water Res. 24(7): 875–881.CrossRefGoogle Scholar
  52. 52.
    Jacobs, L.A., von Gunten, H.R., Keil, R., Kuslys, and M. (1988) Geochemical changes along a river-groundwater infiltration flow path: Glattfelden, Switzerland, Geochim. Cosmochim. Acta 5 2: 2693–2706.CrossRefGoogle Scholar
  53. 53.
    von Gunten, H.R., Karametaxas, G., Krähenbühl, U., Kuslys, M., Giovanoli, R., Hoehn, E., and Keil, R. (1991) Seasonal biogeochemical cycles in riverborne groundwater, Geochim. Cosmochim. Acta 55: 3597–3609.CrossRefGoogle Scholar
  54. 54.
    von Gunten, H.R., Karametaxas, G., Keil, and R. (1994) Chemical processes in infiltrated riverbed sediments, Environ. Sci. Technol. 28(12): 2087–2093.CrossRefGoogle Scholar
  55. 55.
    von Gunten, H.R., and Kull, Th. (1986) Infiltration of inorganic compounds from the Glatt river, Switzerland, into a groundwater aquifer, Water, Air and Soil Pollution 29: 333–346.CrossRefGoogle Scholar
  56. 56.
    Lienert, Ch., Short, St. A., and von Gunten, H.R. (1994) Uranium infiltration from a river to shallow groundwater, Geochim. Cosmochim. Acta 58(24): 5455–5463.CrossRefGoogle Scholar
  57. 57.
    Matsunaga, T., Karametaxas, G., von Gunten, H.R., and Lichtner, P.C. (1993) Redox chemistry of iron and manganese minerals in river-recharged aquifers: A model interpretation of a column experiment, Geochim. Cosmochim. Acta 57: 1691–1704.CrossRefGoogle Scholar
  58. 58.
    von Gunten, U., and Zobrist, U. (1993) Biogeochemical changes in groundwater-infiltration systems: Column studies, Geochim. Cosmochim. Acta 57: 3895–3906.CrossRefGoogle Scholar
  59. 59.
    Hoehn, E., and von Gunten, H.R. (1985) Distribution of metal pollution in groundwater determined from sump sludges in wells, Water Sci. Technol. 17: 115–132.Google Scholar
  60. 60.
    Nowack, B., Xue, H., and Sigg, L. (1997) Influence of natural and anthropogenic ligands on metal transport during infiltration of river water to groundwater, Environ. Sci. Technol. 31(3): 866–872.CrossRefGoogle Scholar
  61. 61.
    Rosta, L., and von Gunten, H.R. (1990) Light scattering characterization of laponite sols, J. Colloid Interface Sci. 134(2): 397–405.CrossRefGoogle Scholar
  62. 62.
    Waber, U., von Gunten, H.R., and Krähenbühl, U. (1987) The impact of the Chernobyl accident on a river/groundwater aquifer, Radiochim. Acta 41: 191–198.Google Scholar
  63. 63.
    von Gunten, H.R., Waber, U.E., and Krähenbühl, U. (1988) The reactor accident at Chernobyl: A possibility to test colloid-controlled transport of radionuclides in a shallow aquifer, J. Contam. Hydrol. 2: 237–247.CrossRefGoogle Scholar
  64. 64.
    Waber, U.E., Lienert, Ch., and von Gunten, H.R. (1990) Colloid-related infiltration of trace metals from a river to shallow groundwater, J. Contain. Hydrol. 6: 251–265.CrossRefGoogle Scholar
  65. 65.
    Hoehn, E., and Hofer, M. (submitted paper) Rn-222 as a tracer for the study of the exchange of river water and ground water during rehabilitation operations in a perialpine floodplain, River Töss, Northern Switzerland. Submitted to J. Hydrol. Google Scholar
  66. 66.
    Vassolo, S., Kinzelbach, W., and Schäfer, W. (1997) Determination of a well head protection zone by stochastic inverse modeling, J. Hydrol. 206(3-4): 268–280.CrossRefGoogle Scholar
  67. 67.
    Hoehn, E. (1997) Linsental Valley, N Switzerland, a resource of drinking water and a natural environment, EAWAG-News 46E: 26–28.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • Eduard Hoehn
    • 1
  1. 1.Swiss Federal Institute of Water Science and TechnologyEAWAGDübendorfSwitzerland

Personalised recommendations