Skip to main content

Part of the book series: NATO Science Series ((ASDT,volume 36))

Abstract

Immunological techniques have been used for decades to distinguish among and identify microorganisms and their products. These methods are all based on the ability of antibodies to bind with exquisite specificity to defined structures called antigen epitopes or antigen determinants characteristic of microbial components. The usefulness of immunological assays depends to a large extent on the binding affinity and specificity of the antibodies and how they are coupled to detection systems, which all together determine the sensitivity and facility of the procedures in identifying agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. Kuby, J. (1997) Immunology, Third Edition, W.H. Freeman and Company, New York.

    Google Scholar 

  2. Roitt, I. (1997) Essential Immunology, Ninth Edition, Blackwell Science Ltd., Oxford.

    Google Scholar 

  3. Hintersdorfer, P., Baumgartner, W., Gruber, H.J., Schilcher, K., and Schindler, H. (1996) Detection and localization of individual antibody-antigen recognition events by atomic force microscopy, Proc. Natl. Acad. Sci. USA, 93, pp 3477–3481.

    Article  Google Scholar 

  4. Chames, P., Coulon, S., and Baty, D. (1998) Improving the affinity and the fine specificity of an anti-cortisol antibody by parsimonious mutagenesis and phage display, J. Immunol. 161, pp 5421–5429.

    PubMed  CAS  Google Scholar 

  5. Russie, P.H., Parhami-Seren, B., Wysocki, L.J., and Margolies, M.N. (1994) A single engineered amino acid substitution changes antibody fine specificity, J. Immunol. 152, pp 146–152.

    Google Scholar 

  6. Hoogenboom, H.R. (1997) Designing and optimizing library selection strategies for generating high-affinity antibodies, Trends in Biotechnology 15, pp 62–70.

    Article  PubMed  CAS  Google Scholar 

  7. Dall’Acqua, W., and Carter, P. (1998) Antibody engineering, Current Opinion in Structural Biology, 8, pp 443–450.

    Article  CAS  Google Scholar 

  8. Van Regenmortel, M.H.V. (1998) Synthetic peptides help in diagnosing viral infections, American Society for Microbiology News 64, pp 332–338.

    Google Scholar 

  9. Köhler, G., and Milstein, C. (1975) Continuous cultures of fused cells secreting antibody of predefined specificity, Nature 256, pp 495–497.

    Article  PubMed  Google Scholar 

  10. Towner, K.J., and Cockayne, A. (1993), Molecular Methods for Microbial Identification and Typing, Chapman & Hall, London.

    Book  Google Scholar 

  11. Gatto-Menking, D.L., Yu, H., Bruno, J.G., Goode, M.T., Miller, M, and Zulich, A.W. (1995) Preliminary testing and assay development for biotoxoids, viruses and bacterial spores using the ORIGEN® immunomagnetic electrochemiluminescence sensor, in Proceedings 5th International Symposium Protection Against Chemical and Biological Warfare Agents: Supplement, Stockholm, Sweden, 11–16 June 1995, National Defence Research Establishment, Umea, pp. 65–72.

    Google Scholar 

  12. Yu, Y.-Y., Van Wie, B.J., Koch, A.R, Moffett, D.F., and Davis, W.C. (1998) Realtime analysis of immunogen complex reaction kinetics using surface plasmon resonance, Anal. Biochem. 263, pp 158–168.

    Article  PubMed  CAS  Google Scholar 

  13. Schuck, P., Millar, D.B., and Kortt, A.A. (1998) Determination of binding constants by equilibrium titration with circulating sample in a surface plasmon resonance biosensor, Anal. Biochem. 265, pp 79–91.

    Article  PubMed  CAS  Google Scholar 

  14. Fukumoto, T., Torigoe, N., Ito, Y., Kajiwara, Y., and Sugimura, K. (1998) T cell proliferation-augmenting activities of the gene 3 protein derived from a phage library clone with CD80-binding activity, J. Immunol. 161, pp 6622–6628.

    PubMed  CAS  Google Scholar 

  15. Lee, G.U., Chrisey, L.A., and Colton, R.J. (1994) Direct measurement of the forces between complementary strands of DNA, Science 266, pp 771–773.

    Article  PubMed  CAS  Google Scholar 

  16. Gupta, S., Ferguson, N., and Anderson, R. (1998), Choas, Persitence, and Evolution od Strain Structure in Antigenically Diverse Infectious Agents, Science 280, pp 912–915.

    Article  PubMed  CAS  Google Scholar 

  17. Koomey, M. (1997) Bacterial pathogenesis: a variation on variation in Lyme disease, Current Biology 7, R538–R540.

    Article  PubMed  CAS  Google Scholar 

  18. Ryan, J.R., Levine, J.F, Apperson, C.S., Lubke, L., Wirtz, R.A, Spears, P.A., and Orndorff, P.E. (1998) An experimental chain of infection reveals that distinct Borrelia burgdorferi populations are selected in arthropod and mammalian hosts, Mol. Microbiol. 30, pp 365–379.

    Article  PubMed  CAS  Google Scholar 

  19. Zhang, J.-R, Hardham, J.M., Barbour, A.G., and Noms, S.J. (1997) Antigenic variation in Lyme disease borreliae by promiscuous recombination of VMP-like sequence cassettes, Cell 99, pp 275–285.

    Article  Google Scholar 

  20. Puntoriero, G., Meola, A., Lahm, A., Zucchelli, S., Ercole, B.B, Tafi, R., Pezzanera, M., Mondelli, M.U., Cortese, R., Tramontano, A., Galfre, G., and Nicosia, A. (1998) Towards a solution for hepatitis C virus hypervariability: mimotopes of the hypervariable region 1 can induce antibodies cross-reacting with a large number of viral variants, EMBO J. 17, pp 3621–3533.

    Article  Google Scholar 

  21. Farci, P., Alter, H.J., Wong, D.C., Miller, R.H., Govindarajam, S., Engle, R., Shapiro, M. and Purcell, R.H. (1994) Prevention of hepatitis C virus infection in chimpanzees after antibody-mediated in vitro neutralization, Proc. Natl. Acad. Sci. USA 91, pp 7792–7796.

    Article  PubMed  CAS  Google Scholar 

  22. Madigan, M.T., Martinko, J.M., and Parker, J. (1997) Brock Biology of Microorganisms, Eighth Edition, Prentice Hall International, Inc., New Jersey.

    Google Scholar 

  23. Hayden, M.S., Gilliland, L.K., and Ledbetter, J.A. (1997) Antibody engineering, Current Opinion in Immunology 9, pp 201–212.

    Article  PubMed  CAS  Google Scholar 

  24. Rader, C., and Barbas, C.F., III (1997) Phage display of combinatorial antibody libraries, Current Opinion in Biotechnology 8, pp 503–508.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nixdorff, K. (2002). Molecular Biological Techniques for Subspecies Identification: Immunological Techniques a Comparison. In: Dando, M.R., Klement, C., Negut, M., Pearson, G.S. (eds) Maximizing the Security and Development Benefits from the Biological and Toxin Weapons Convention. NATO Science Series, vol 36. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0472-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0472-5_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0913-6

  • Online ISBN: 978-94-010-0472-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics