Skip to main content

Economic Risk of Flooding: A Case Study for the Glomma River, Norway

  • Chapter
Book cover Hydrological Models for Environmental Management

Part of the book series: NATO Science Series ((ASEN2,volume 79))

  • 226 Accesses

Abstract

Recurring extreme floods during recent decades [50] make many believe that the flood danger is greater today than ever before. Indeed, floods (and drought) cause more damage and kill more people than any other natural disaster [37, 25]. In what way has the situation become worse? Is it a result of more frequent floods with higher magnitude or is it the vulnerability of our society to floods that has increased?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8. References

  1. Ashkar, F. and Rouselle, J. (1981) Design discharge as a random variable: a risk study. Water Resources Research 17(3): 577–591.

    Article  Google Scholar 

  2. Aven, T. (1992) Reliability and risk analysis. ElsevierAppliedSciences.

    Google Scholar 

  3. Bates, C.G. and Henry AJ. (1928) Forest and stream-flow experiment at Wagon Wheel Gap, Colorado. MonthlyWeatherReviewsupplement No 30 74pp.

    Google Scholar 

  4. Berger, J.O. (1985) Statisticaldecision theoryand Bayesian analysis. Secondedition, Springer.

    Google Scholar 

  5. Caspary, HJ. (1998) Regional increase of winter floods in southwest Germany caused by atmospheric circulation changes (abstract). Annales Geophysicae Part II Hydrology, Oceans & Atmosphere, Supplement II to Volume 16 p. C463.

    Google Scholar 

  6. Engler, A. (1919) Einfluss des Waldes auf den Stand der Gewasser. Mitt. Schweiz. anst. für das ForslicheVersuchswesen 12, 626.

    Google Scholar 

  7. Galea, G. and Prudhomme, C. (1994) Notionsde base et concepts utiles pour la compréhension et la modélisation synthétigues des régimes de crue des bassins versants au sens des modèles QdF. Revuedes sciencesde l’eau 10(1):83–101.

    Article  Google Scholar 

  8. Gilard, O. (1998) Les bases techniques de la methodInondabilité, Cemagref Édition.

    Google Scholar 

  9. Gottschalk, L. and Krasovskaia, I. (1997)Climatechangeand river runoff in Scandinavia, approachesand challenges. BorealEnvironment Research, 2(2): 145–162.

    Google Scholar 

  10. Gottschalk, L. and Krasovskaia, I. (2000) Economicrisk of flooding. A case study for the floodplain upstream Nor in the Glommariver, Norway. HYDRA-report no RO1, Norwegian Water Resourcesand EnergyDirectorate, in press.

    Google Scholar 

  11. Gottschalk, L. and Srelthun, N.R. (1990) Largescale temporalvariability and risk of design failure. (Abstract)AnnalesGeophysicae, EGS XV General Assembly, Copenhagen, 1990.

    Google Scholar 

  12. Gottschalk, L. and Weingartner, R. (1998) Distribution of peak flow derived from a distributionof rainfall volumes and runoffcoefficient, and a unit hydrograph. Journal of Hydrology 208:148–162.

    Article  Google Scholar 

  13. Gottschalk, L. and Weingartner, R. 1998: Scalingof regionalfloods — an L-momentapproach. EuropeanGeophysicalSocietyXX111 General Assembly Nice, 20–24 April. Abstract. European GeophysicalSociety, AnnalesGeophysical, Part II, Hydrology, Oceans& Atmosphere, SuppelmentII toVol. 16.

    Google Scholar 

  14. Gupta, V.K., Mesa, O. and Dawdy, D.R. (1994) Multiplicative cascades and spatial variability of rainfall, river networksand floods. In: Rundle, J., Klein, W. and Turcotte, D. (Eds.) Reduction and predictabilityof NaturalDisasters. SantaFeInstitute, XXV, Addison-Wesley.

    Google Scholar 

  15. Haan, C.T. (1977) Statistical methodsin hydrology. The Iowa State University Press, Ames, Iowa 378 pp.

    Google Scholar 

  16. Handemer, J.H. (1983): Risk information for floodplain management, Discussion. Journal of Water Resources Planning and Management ASCE, 114:120–123.

    Article  Google Scholar 

  17. Jain, S.K., Yogararasin, G.N. and Seth, S.M. (1992) A risk-based approach for flood control operationof a multipurpose reservoir. Water Resources Bulletin 28(6): 1037–1043.

    Article  Google Scholar 

  18. James, L.D. and Hall, B. (1986): Risk information for floodplain management. Journal of Water Resources Planningand Management ASCE, 112:485–499.

    Article  Google Scholar 

  19. Jaeggi, M.N.R. and Zarn, B. (1990): A new policy in designing flood protection schemes as a consequenceof the 1987floods in the Swiss Alps. In W.R. White (ed.) International Conferenceof River Rood Hydraulics, Hydraulic Research Limited, JohnWiley & Sons Ltd. pp 75–84.

    Google Scholar 

  20. Kite, G.W. (1977) Frequency and risk analysis in Hydrology. Water Resources Publications, Fort Collins, Colorado.

    Google Scholar 

  21. Krasovskaia, I. (1996) Stability of river flow regimes. Dr. Philos. thesis, Department of Geography, University of Oslo, Norway, Rapport No 5, Oslo.

    Google Scholar 

  22. Krasovskaia, I. & Saelthun NR. (1997) Sensitivity of the stability of Scandinavian river flow regimesto a predictedtemperaturerise. Hydr.Sci.J. 42 (5), 693–711

    Article  Google Scholar 

  23. Krasovskaia, I., Gottschalk, L., Rodrigues, A. and Laporte, (1999) Dependenceof the frequency and magnitude of extremefloods in Costa Rica on SOl. IAHS Publication. 255, 81–89.

    Google Scholar 

  24. Krasovskaia. l., Gottschalk, L., Saelthun, N.R, & Berg. H, (2000) The HYDRAR4 project: improved front line decision tools — risk perception amongdecision-makers and riparianpopulation(in Norwegian). Report, Norwegian Water Resources and EnergyDirectorate. (in press).

    Google Scholar 

  25. Kundzewicz, Z.W. (1998) Floods of the I99Os: Business as usual? WMOBulletin 47(2):155–160.

    Google Scholar 

  26. Kuusisto, E., Lemmelä, R., Liebscher, H. and Nobilis, F. (1994) Climate and water in Europe: some recent issues. WMORAN Workinggroupon hydrology, Helsinki.

    Google Scholar 

  27. Kuzera, G. (1982) Combining site specific and regional information: An empirical Bayes approach. Water Resources Research 18(2):306–314.

    Article  Google Scholar 

  28. Lambert, J.H. and Li, D. (1994) Evaluating risk of extreme events for univariate loss functions. Journal of WaterResources Planning and Management ASCE 120(3): 382–399.

    Article  Google Scholar 

  29. Loucks, D.P., Stedinger, J.R. and Haith, D.A. (1981) Water resources systems planning and analysis. Prentice-Hall, Inc. N.J.

    Google Scholar 

  30. Lowrance, W.W. (1976) Of acceptable risk. William Kaufmann inc., Los Altos, California.

    Google Scholar 

  31. Mays, L.W. and Tung, Y.-K. (1992) Hydrosystems engineering and management. McGraw-Hill, Inc. NewYork.

    Google Scholar 

  32. Mitsiopolous, J., Haimes, Y.Y. and Li, D. (1991) Approximating catastrophic risk through statistics of extremes. WaterResources Research 27(6). 1223–1230.

    Article  Google Scholar 

  33. Parett, N.F. (1987) Bureau of Reclamation use of risk analysis. In Singh, V.P. (ed.) Application of frequency and risk in waterresources. D. Reidel Publishing Co. Boston, Mass. 411–428.

    Chapter  Google Scholar 

  34. Plate, E. J. (1998) Probabilistic design for flood protection structures. In Casale, R., Rasmussen, N.C. (1981) The application of probabilistic assessment technology to energytechnologies. Annual Rev. of Energy 6:123–138.

    Google Scholar 

  35. Rasmussen, P.F. (1991) On the sampling distribution of exceedance probabilities. In Ganulis, J. Waterresources engineering risk assessment. NATO ASI Series Vol.G29: 91–96.

    Google Scholar 

  36. Rodda, J.C. (1976) Facets of Hydrology. John Wiley & Sons.

    Google Scholar 

  37. Rodda, J.C. (1995): Wither World Water. Water Resources Bulletin 31(1):1–7.

    Article  Google Scholar 

  38. Simonovic, S.P. and Mariño, M.A. (1981) Reliability programing in reservoir management 2. Risk lossfunctions. Water Resources Research 17(4): 822–826.

    Article  Google Scholar 

  39. Smith, J. (1992) Representation of basin scale in flood peak distributions. Water Resources Research 28(11):2993–2999.

    Article  Google Scholar 

  40. Springer, M.D. (1979): Thealgebra of random variables. John Wiley & Sons.

    Google Scholar 

  41. Starr, C. (1969) Socialbenefitversus technological risk. Science 165(3899): 1232–1238.

    Article  Google Scholar 

  42. Stedinger, J.R. ( 1997) Expected probability and annual damage estimation. Journal of Water Resources Planning and Management ASCE 123(2): 125–135.

    Article  Google Scholar 

  43. Tang, W.H., Mays, L.W. and Yen, B.C. (1975) Optimal risk-based design of storm sewer networks. Journal of Environmental Engineering ASCE 103(3): 381–398.

    Google Scholar 

  44. Thompson, K.D., Stedinger, J.R. and Heath, D.C. (1997) Evaluation and presentation of dam failure and flood risk. Journal of WaterResources Planning and Management ASCE 123(4): 216–227

    Article  Google Scholar 

  45. Tung, Y.-K. and Mays, L.W. (1981) Optimal risk-based design of flood levee systems. Water Resources Research 17(4): 843–852.

    Article  Google Scholar 

  46. Tukey, J.W. (1958) Bias and confidence in not-quite large samples. (Abstract) Ann. Math. Stat. 29:614.

    Google Scholar 

  47. Tveito, O.E. (1993) A regional flood frequency analysis of Norwegian catchments. Dep. of Geophysics, University of Oslo, Report No 86.

    Google Scholar 

  48. Wathne, M. (1998) Samfunnskostnader pa grunn av flomskade i vassdrag. SINTEF Rapport, Trondheim.

    Google Scholar 

  49. Watt, W.E. and Paine, J.D. (1992): Flood risk mapping in Canada: 1. Uncertainty considerations. Canadian WaterResources Journal 17:129–138.

    Article  Google Scholar 

  50. WMO (1995): The globalclimate system. Climate system monitoring June 1991-November 1993. WMO-No 819, ISBN 92-63-10819-6.

    Google Scholar 

  51. Yongquan, W. (1993) Solaractivity and maximum floods in the world. In: Kundzewicz, Z.W., Rosbjerg, D., Simonovic, S.P. & Takeushi, K. (eds.) Extreme Hydrological Events: Precipitation, Floods and Drought. IAHS Publ. 213:121–127.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gottschalk, L., Krasovskaia, I., Stælthun, N.R. (2002). Economic Risk of Flooding: A Case Study for the Glomma River, Norway. In: Bolgov, M.V., Gottschalk, L., Krasovskaia, I., Moore, R.J. (eds) Hydrological Models for Environmental Management. NATO Science Series, vol 79. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0470-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0470-1_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0911-2

  • Online ISBN: 978-94-010-0470-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics