Skip to main content

Shell Model with Random Interactions

  • Chapter
The Nuclear Many-Body Problem 2001

Part of the book series: NATO Science Series ((NAII,volume 53))

  • 428 Accesses

Abstract

The standard description of a many-body quantum system is based on the mean field and residual interactions. As excitation energy grows, the high level density makes any residual interaction effectively strong, independent particle configurations mix, and the energy spectrum acquires local features predicted by random matrix theory (RMT) [1, 2, 3], whereas neighboring stationary states “look the same” [4]. This picture of universal quantum chaos is applicable to nuclei, atoms, solid state microdevices, quantum computing schemes and quantum field models. At low excitation energy the stationary states are less mixed, and coherent effects are strongly pronounced. According to conventional wisdom, the quantum numbers and ordering of the low-lying states are not universal being determined by the specifics of the system, its symmetry and the coherent part of the residual interaction. Thus, all even-even nuclei has the ground state (g.s.) spin J 0 = 0; practically always the g.s. isospin T 0 takes the lowest possible value. This is assumed to be a consequence of the strong attractive pairing correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.A. Brody et al., Rev. Mod. Phys. 53, 385 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  2. V. Zelevinsky, Annu. Rev. Nucl. Part. Sci. 46, 237 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  3. T. Guhr, A. Müller-Groehlig and H.A. Weidenmüller, Phys. Rep. 299, 189 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  4. V. Zelevinsky, B.A. Brown, N. Frazier and M. Horoi, Phys. Rep. 276, 85 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  5. C.W. Johnson, G.F. Bertsch, and D.J. Dean, Phys. Rev. Lett. 80, 2749 (1998).

    Article  ADS  Google Scholar 

  6. D. Mulhall, A. Volya and V. Zelevinsky, Phys. Rev. Lett. 85, 4016 (2000).

    Article  ADS  Google Scholar 

  7. C.W. Johnson, G.F. Bertsch, D.J. Dean, and I. Talmi, Phys. Rev. C 61, 014311 (2000).

    ADS  Google Scholar 

  8. M. Horoi, B.A. Brown and V. Zelevinsky, Phys. Rev. Lett., 87, 062501 (2001).

    Article  ADS  Google Scholar 

  9. R. Bijker and A. Frank, Phys. Rev. Lett. 84, 420 (2000).

    Article  ADS  Google Scholar 

  10. D. Kusnezov, Phys. Rev. Lett. 85, 3773 (2000).

    Article  ADS  Google Scholar 

  11. R. Bijker, A. Frank and S. Pittel, Phys. Rev. C 60, 021302 (1999).

    ADS  Google Scholar 

  12. V. Zelevinsky and A. Volya, to be published.

    Google Scholar 

  13. T. Døssing et al., Phys. Rep. 268, 1 (1996).

    Article  ADS  Google Scholar 

  14. B.A. Brown and B.H. Wildenthal, Annu. Rev. Nucl. Part. Sci. 38, 29 (1998).

    ADS  Google Scholar 

  15. S.T. Beliaev and V.G. Zelevinsky, Nucl. Phys. 39, 582 (1962).

    Article  MATH  Google Scholar 

  16. V.V. Flambaum and F.M. Izrailev, Phys. Rev. E 56, 5144 (1997).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zelevinsky, V., Volya, A., Mulhall, D. (2002). Shell Model with Random Interactions. In: Nazarewicz, W., Vretenar, D. (eds) The Nuclear Many-Body Problem 2001. NATO Science Series, vol 53. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0460-2_48

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0460-2_48

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0463-6

  • Online ISBN: 978-94-010-0460-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics