Advertisement

Shell Model with Random Interactions

  • V. Zelevinsky
  • A. Volya
  • D. Mulhall
Part of the NATO Science Series book series (NAII, volume 53)

Abstract

The standard description of a many-body quantum system is based on the mean field and residual interactions. As excitation energy grows, the high level density makes any residual interaction effectively strong, independent particle configurations mix, and the energy spectrum acquires local features predicted by random matrix theory (RMT) [1, 2, 3], whereas neighboring stationary states “look the same” [4]. This picture of universal quantum chaos is applicable to nuclei, atoms, solid state microdevices, quantum computing schemes and quantum field models. At low excitation energy the stationary states are less mixed, and coherent effects are strongly pronounced. According to conventional wisdom, the quantum numbers and ordering of the low-lying states are not universal being determined by the specifics of the system, its symmetry and the coherent part of the residual interaction. Thus, all even-even nuclei has the ground state (g.s.) spin J 0 = 0; practically always the g.s. isospin T 0 takes the lowest possible value. This is assumed to be a consequence of the strong attractive pairing correlations.

Keywords

Occupation Number Random Matrix Theory Residual Interaction Random Interaction Coherent Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.A. Brody et al., Rev. Mod. Phys. 53, 385 (1981).MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    V. Zelevinsky, Annu. Rev. Nucl. Part. Sci. 46, 237 (1996).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    T. Guhr, A. Müller-Groehlig and H.A. Weidenmüller, Phys. Rep. 299, 189 (1998).MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    V. Zelevinsky, B.A. Brown, N. Frazier and M. Horoi, Phys. Rep. 276, 85 (1996).MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    C.W. Johnson, G.F. Bertsch, and D.J. Dean, Phys. Rev. Lett. 80, 2749 (1998).ADSCrossRefGoogle Scholar
  6. 6.
    D. Mulhall, A. Volya and V. Zelevinsky, Phys. Rev. Lett. 85, 4016 (2000).ADSCrossRefGoogle Scholar
  7. 7.
    C.W. Johnson, G.F. Bertsch, D.J. Dean, and I. Talmi, Phys. Rev. C 61, 014311 (2000).ADSGoogle Scholar
  8. 8.
    M. Horoi, B.A. Brown and V. Zelevinsky, Phys. Rev. Lett., 87, 062501 (2001).ADSCrossRefGoogle Scholar
  9. 9.
    R. Bijker and A. Frank, Phys. Rev. Lett. 84, 420 (2000).ADSCrossRefGoogle Scholar
  10. 10.
    D. Kusnezov, Phys. Rev. Lett. 85, 3773 (2000).ADSCrossRefGoogle Scholar
  11. 11.
    R. Bijker, A. Frank and S. Pittel, Phys. Rev. C 60, 021302 (1999).ADSGoogle Scholar
  12. 12.
    V. Zelevinsky and A. Volya, to be published.Google Scholar
  13. 13.
    T. Døssing et al., Phys. Rep. 268, 1 (1996).ADSCrossRefGoogle Scholar
  14. 14.
    B.A. Brown and B.H. Wildenthal, Annu. Rev. Nucl. Part. Sci. 38, 29 (1998).ADSGoogle Scholar
  15. 15.
    S.T. Beliaev and V.G. Zelevinsky, Nucl. Phys. 39, 582 (1962).MATHCrossRefGoogle Scholar
  16. 16.
    V.V. Flambaum and F.M. Izrailev, Phys. Rev. E 56, 5144 (1997).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • V. Zelevinsky
    • 1
  • A. Volya
    • 1
  • D. Mulhall
    • 1
  1. 1.Department of Physics and Astronomy andNational Superconducting Cyclotron LaboratoryEast LansingUSA

Personalised recommendations