Skip to main content

Relativistic Pseudospin Symmetry in Nuclei

  • Chapter
The Nuclear Many-Body Problem 2001

Part of the book series: NATO Science Series ((NAII,volume 53))

  • 431 Accesses

Abstract

Peter Ring was one of the first to really grasp the significance of pseudospin symmetry as a relativistic symmetry [1, 2, 3, 4]. Originally, pseudospin doublets were introduced into nuclear physics to accommodate an observed near degeneracy of certain normal-parity shell-model orbitals with non-relativistic quantum numbers (n r , , j = + 1/2) and (n r − 1, + 2, j = + 3/2) where n r , , and j are the single-nucleon radial, orbital, and total angular momentum quantum numbers, respectively [5, 6]. The doublet structure, is expressed in terms of a “pseudo” orbital angular momentum ~ = + 1 coupled to a “pseudo” spin, ~s = 1/2. For example, (n r s 1/2, (n r − 1)d 3/2) will have ~ = 1, (n r p 3/2, (n r − 1)f 5/2) will have ~ℓ = 2, etc. Since j = ~ ± ~s, the energy of the two states in the doublet is then approximately independent of the orientation of the pseudospin. Some examples are given in Table 1. In the presence of deformation the doublets persist with asymptotic (Nilsson) quantum numbers [N, n 3, Λ, Ω = Λ +1/2] and [N, n 3, Λ + 2, Ω = Λ + 3/2], and can be expressed in terms of pseudoorbital and total angular momentum projections ~Λ = Λ + 1, Ω = ~Λ ± 1/2. This pseudospin “symmetry” has been used to explain features of deformed nuclei [7], including superdeformation [8] and identical bands [9, 10, 11]. While pseudospin symmetry is experimentally well corroborated in nuclei, its foundations remained a mystery and “no deeper understanding of the origin of these (approximate) degeneracies” existed [12].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.N. Ginocchio, Phys. Rev. Lett. 78 (1997) 436.

    Article  ADS  Google Scholar 

  2. J.N. Ginocchio and A. Leviatan, Phys. Lett. B 425 (1998) 1.

    ADS  Google Scholar 

  3. J.N. Ginocchio and D. G. Madland, Phys. Rev. C 57 (1998) 1167.

    ADS  Google Scholar 

  4. G.A. Lalazissis, Y.K. Gambhir, J.P. Maharana, C.S. Warke and P. Ring, Phys. Rev. C 58 (1998) R45.

    ADS  Google Scholar 

  5. A. Arima, M. Harvey and K. Shimizu, Phys. Lett. B 30 (1969) 517.

    ADS  Google Scholar 

  6. K.T. Hecht and A. Adler, Nucl. Phys. A 137 (1969) 129.

    ADS  Google Scholar 

  7. A. Bohr, I. Hamamoto and B.R. Mottelson, Phys. Scr. 26 (1982) 267.

    Article  ADS  Google Scholar 

  8. J. Dudek et al., Phys. Rev. Lett. 59 (1987) 1405.

    Article  ADS  Google Scholar 

  9. W. Nazarewicz et al., Phys. Rev. Lett. 64 (1990) 1654.

    Article  ADS  Google Scholar 

  10. F.S. Stephens et al., Phys. Rev. Lett. 65 (1990) 301

    Article  ADS  Google Scholar 

  11. F.S. Stephens et al.,Phys. Rev. C 57 (1998) R1565.

    ADS  Google Scholar 

  12. A.M. Bruce et. al., Phys. Rev. C 56 (1997) 1438.

    ADS  Google Scholar 

  13. B. Mottelson, Nucl. Phys. A 522 (1991) 1.

    ADS  Google Scholar 

  14. A. L. Blokhin, C. Bahri, and J.P. Draayer, Phys. Rev. Lett. 74 (1995) 4149.

    Article  ADS  Google Scholar 

  15. A. Leviatan and J.N. Ginocchio, Phys. Lett. B in press, nucl-th/0108016.

    Google Scholar 

  16. A. Leviatan and J.N. Ginocchio, contribution to these proceedings.

    Google Scholar 

  17. J. Meng et al., Phys. Rev. C 58 (1998) R628.

    ADS  Google Scholar 

  18. J.N. Ginocchio and A. Leviatan, Phys. Rev. Lett. 87 (2001) 072502.

    Article  ADS  Google Scholar 

  19. J.N. Ginocchio, Phys. Rev. C 59 (1999) 2487.

    Article  ADS  Google Scholar 

  20. P. von Neumann Cosel and J.N. Ginocchio, Phys. Rev. C 62 (2000) 014308.

    Article  ADS  Google Scholar 

  21. T.D. Cohen et al., Prog, in Part, and Nucl. Phys. 35 (1995) 221.

    Article  ADS  Google Scholar 

  22. J. N. Ginocchio, Phys. Rev. Lett. 82 (1999) 4599.

    Article  ADS  Google Scholar 

  23. H. Leeb and S. Wilmsen, Phys. Rev. C 62 (2000) 024602.

    Article  ADS  Google Scholar 

  24. J. B. Bowlin, A. S. Goldhaber and C. Wilkin, Z. Phys. A 331 (1988) 83.

    ADS  Google Scholar 

  25. P. Alberto et al. Phys. Rev. Lett. 86 (2001) 5015.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ginocchio, J.N., Leviatan, A. (2002). Relativistic Pseudospin Symmetry in Nuclei. In: Nazarewicz, W., Vretenar, D. (eds) The Nuclear Many-Body Problem 2001. NATO Science Series, vol 53. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0460-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0460-2_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0463-6

  • Online ISBN: 978-94-010-0460-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics