Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 52))

  • 687 Accesses

Abstract

Model building is at best a dynamic process where model fitting and analysis may lead to new experiments and an improved model. The language of statistics is often used for evaluation of models. Statistics, however, is the science of random errors and random errors are not the main problem for model builders. Removal of systematic errors is generally the major issue. Hence, the given confidence limits are often many times too small. The non-statistical errors may be of three kinds:

  • Experimental errors

  • Errors due to wrong model structure

  • Errors due to wrong parameters

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Temkin, M (1945) Acta Physicochim., URSS, 20, pp. 411.

    CAS  Google Scholar 

  2. Flood, H, FΦrland, T. and K. Grjotheim, K. (1954): Z anorg. allgem. Chem. 19, p. 276.

    Google Scholar 

  3. Flood, H. and Urnes, J. (1955) Zeitschrift f. Elektrochemie, 59, p. 834.

    CAS  Google Scholar 

  4. Levin, E. M., Robbins, C. R. and McMurdie, H. F. (1983) Phase Diagram for Ceramists. Am. Cer. Soc.

    Google Scholar 

  5. Grjotheim, K. (1956) Det Kgl. Norske Videnskabers Selskabs Skrifter, no. 5.

    Google Scholar 

  6. Gilbert, B., Robert, E., Tixhon, E., Olsen, J. E. and Φstvold, T. (1996) Structure and Thermodynamics of NaF-AlF3 Melts with Addition of CaF2 and MgF2 Inorg. Chem. 35, 4198–4210.

    Article  CAS  Google Scholar 

  7. Fannin, A. A., King, L. A. Seegmiller, D. W. and Φye, H. A. (1982) Densities and Phase Equilibria of Aluminium Chloride — Sodium Chloride Melts. 2. Two-Liquid-Phase Region, J. Chem. Eng. Data, 27, 114–119.

    Article  CAS  Google Scholar 

  8. Dewing, E. (1955) J. Am. Chem. Soc, 77, 2639.

    Article  CAS  Google Scholar 

  9. Φye, H. A., and Gruen, D. M. (1964) Octahedral Absorption Spectra of the Dipositive 3d Metal Ions in Molten Aluminium Chloride, Inorg Chem., 3, 836–841.

    Google Scholar 

  10. Hertzberg, F. (1970) MODFIT, Department of Chemical Engineering, The Norwegian Institute of Technology, Trondheim, Norway.

    Google Scholar 

  11. Cyvin, S. J., Klæboe, P., Rytter, E. and Φye. H. A. (1970) Spectral Evidence for Al2Cl7-in Chloride Melts, J. Chem. Phys., 52, 2776–2778.

    Article  CAS  Google Scholar 

  12. Φye, H. A., Rytter, E., Klæboe, P. and Cyvin, S. J. (1971) Raman Spectra of KCl-AlCl3 Melts and Normal Coordinate Analysis of Al2Cl7-, Acta Chem. Scand., 1971, 25, 559–576.

    Article  Google Scholar 

  13. Olsen, E. J. (1996) Thesis no. 82, Institute of Inorganic Chemistry, NTNU.

    Google Scholar 

  14. Kvam, K. R., Bratland, D. and Φye, H. A. (1999) The Solubility of Neodymium in the Systems NdCl3-LiCl and NdCl3-LiCl-KCl. Journal of Molecular Liquids 83, 111–118.

    Article  CAS  Google Scholar 

  15. Linga, H., Motzfeldt, K. and Φye, H. A. (1978) Vapour Pressure of Molten Aluminium Chloride — Aluminium Chloride Mixtures, Ber. Bunsenges. Phys. Chem., 82, 568–576.

    CAS  Google Scholar 

  16. JANAF, Thermochemical Tables 3. ed., J. of Physical and Chemical Reference Data, 1985, vol. 14, (Supplement no. 1. )

    Google Scholar 

  17. Linga, H. (1979) Vapour pressure of basic alkalichlorid — aluminiumchlorid melts. Thesis no. 36, Institute of Inorganic Chemistry, The Norwegian Institute of Technology, Trondheim, Norway.

    Google Scholar 

  18. Shvartsman, W. I. (1940) Zhur. Fiz. Khim. 14, 254.

    Google Scholar 

  19. Fischer, W and Simon. A. I. (1960) Z anorg. allgem. Chem. 1, 306.

    Google Scholar 

  20. Knapstad, B., Linga, H. and Φye, H. A. (1981) Vapour Pressure of Ternary LiCl-NaCl-AlCl3 Melts, Ber. Bunsenges. Phys. Chem. 85, 1132–1139.

    Article  CAS  Google Scholar 

  21. Grande, K., Hertzberg, T. and Φye, H. A. (1986) A Thermodynamic Computer Model for the System AlCl3-NaCl-KCl, Light Metals, 431–436.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Øye, H.A. (2002). Modelling of Thermodynamic Data. In: Gaune-Escard, M. (eds) Molten Salts: From Fundamentals to Applications. NATO Science Series, vol 52. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0458-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0458-9_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0459-9

  • Online ISBN: 978-94-010-0458-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics