Skip to main content

Origin and Control of Low-Melting Behavior in Salts, Polysalts, Salt Solvates, and Glassformers

  • Chapter
Molten Salts: From Fundamentals to Applications

Part of the book series: NATO Science Series ((NAII,volume 52))

Abstract

In this chapter we first analyze the reasons that some substances, ionic or otherwise, have melting points that are low relative to others of their class. In the case of ionic liquids such systems then may remain liquid at ambient temperature, and provide the basis for novel electrolytes and synthetic reaction media, or alternatively may form glassy solids during cooling. We then discuss a variety of examples of systems that may be useful in either of the above ambient temperature liquid categories. We analyse the factors that decide the fluidities of ambient temperature ionic liquids and give data on a class of such liquids that may have superior properties for “green” chemistry and photoelectrochemical cell purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. This section is taken almost without modification from an article prepared by the present author for the Enrico Fermi series of summer schools in physics, and is incorporated here by permission of the Italian Physical Society. The original article containing this section, was entitled “The Glassy State Problem: Failure to Crystallize, and Vitrification,” and it may be found in: Proc. Int. School of Physics, “Enrico Fermi”, Course CXXXIV, edited by F. Mallamace and H. E. Stanley, IOS Press Amsterdam, 1997, p. 571.

    Google Scholar 

  2. Alba C., Busse L. E., and Angell C. A., J. Chem. Phys. 92 (1990) 617.

    Article  CAS  Google Scholar 

  3. Wong J. and Angell C. A., Glass: Structure by Spectroscopy (Marcel Dekker, New York) (1976) Chap. 1.

    Google Scholar 

  4. R. S Pitzer. and D. W. Scott, J. Amer. Chem. Soc. 65 (1943) 803.

    Article  CAS  Google Scholar 

  5. S. Jacob, J. Javornizky, G. H. Wolf and C. A. Angell, Intern. J. Inorg. Mater. 3(3) 241–251, (2001).

    Article  CAS  Google Scholar 

  6. C. A. Angell, in Preparation and Characterization of Materials, ed. C. N. R. Rao and J. M. Honig, Academic Press (1981), p. 449.

    Google Scholar 

  7. H. S. Chen, and D. Turnbull, J. Chem. Phys. 48 (1968) 2560; J. Appl. Phys. 38 (1967) 3646; Acta. Metall. 17 (1969) 1021.

    Article  CAS  Google Scholar 

  8. Topol L. E., Mayer S. W. and Ransom L. D., J. Phys. Chem. 64 (1960) 862.

    Google Scholar 

  9. (b) C. A Angell. and D. C Ziegler., Mat. Res. Bull. 16 (1981) 269.

    Google Scholar 

  10. E Thilo, C. Wieker and W. Wieker, Silic. Tech. 15 (1964) 109.

    CAS  Google Scholar 

  11. Phase Diagrams for Ceramicists, edited by E. M. Levin, C. R. Robbins and H. F. McMurdie, (American Ceramic Society) Diagram No 391.

    Google Scholar 

  12. Changle Liu and C. A. Angell Solid State Ionics (Proc. 7th Int. Conf. Sol. State Ionics), 86-88, 467–473 (1996).

    Article  CAS  Google Scholar 

  13. F. Mezei, W Knaak and B Farago, Phys. Rev. Lett. 58, 571 (1987)

    Article  CAS  Google Scholar 

  14. Götze, W. in Liquids, Freezing, and the Glass Transition, Eds. Hansen, J.-P. and Levesque, D., NATO-ASI, North Holland (Amsterdam) (Les Houches 1989) 287–503.

    Google Scholar 

  15. Poulain M., Chantanasingh M. and Lucas J., Mater. Res. Bull., 12 (1977) 151.

    Article  CAS  Google Scholar 

  16. (a) Wilkes, J.S., Levisky, J.A., Wilson, R.A., and Hussey, C.L., Inorg. Chem., 21, 1263 (1982). (b) C. L. Hussey, Adv. Molten Salt Chem., 5, 185, (1983)

    Article  CAS  Google Scholar 

  17. E. I. Cooper and C. A. Angell, Solid State Ionics, 9 & 10, 617 (1983). (see “note added in proof”). 17. E. I. Cooper and E. J. M Sullivan, Proc. 8 th. Intern. Symp. Molten Salts, The Electrochem. Soc., Pennington NJ, 1992, Proc. Vol. 92-16, pp.386-396

    Article  Google Scholar 

  18. R. T. Carlin, and J. S. Wilkes, in Chemistry of Nonaqueous Solutions, G. Mamantov and A. I. Popov, Editors, Ch. 5, VCH Publishers, New York (1994) and the article by R. Carlin in this issue.

    Google Scholar 

  19. P. Bonhote, A.-P. Dias, M. Armand, N. Papageorgiou, K. Kalyanasundaram, and M. Graetzel, Inorganic Chem., 35, 1168 (1996)

    Article  CAS  Google Scholar 

  20. (a) C. J. Bowles, D. W. Bruce and K. R. Seddon, Chem. Commun. 1625 (1996)

    Google Scholar 

  21. D. Holbrey and K. R Seddon, J. Chem. Soc., Dalton Trans., 2133, (1999).

    Google Scholar 

  22. C. A. Angell, C. Liu and E. Sanchez, Nature, 362, 137–139, (1993).

    Article  CAS  Google Scholar 

  23. M. Videa and P. Lucas (unpublished work)

    Google Scholar 

  24. K. Xu and C.A. Angell, Symp. Mat. Res. Soc., 369, 505 (1995).

    Article  CAS  Google Scholar 

  25. M. Videa and C. A. Angell, J. Phys. Chem. 103, 4185–4190 (1999).

    Article  CAS  Google Scholar 

  26. S.-S. Zhang, Z. Chang., K. Xu and C. A. Angell, Electrochimica Acta 45, 1229 (2000).

    Article  CAS  Google Scholar 

  27. W. Xu and C. A. Angell, Electrochem. and Solid State Lett., 3, 366 (2000).

    Article  CAS  Google Scholar 

  28. W. Xu, unpublished work.

    Google Scholar 

  29. “Lithium ion conducting electrolytes” C. A. Angell and C. Liu, US Patent No. 5, 506, 073, April 9, 1996.

    Google Scholar 

  30. C. A. Angell, L. E. Busse, E. E. Cooper, R. K. Kadiyala, A. Dworkin, M. Ghelfenstein, H. Szwarc, and A. Vassal, J. de Chim. Phys., 82, 267 (1985).

    CAS  Google Scholar 

  31. Liquids, Rotator Phases, and Glass Transitions in Relation to Cation Symmetry in C12 Tetra-alky-lammoniuma Bromides, E. I. Cooper and C. A. Angell, J. Phys. Chem. (rejected), copies may be downloaded from the website at www.public.asu.edu/~caangell/.

    Google Scholar 

  32. E. I. Cooper and C. A. Angell, Solid State Ionics, 18 & 19, 570 (1986).

    Article  Google Scholar 

  33. M. Hirao, H. Sugimoto, and H. Ohno, J. Electrochem. Soc., 147, 4168 (2000)

    Article  CAS  Google Scholar 

  34. V. Velikov and C. A. Angell, (unpublished work)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Angell, C.A. (2002). Origin and Control of Low-Melting Behavior in Salts, Polysalts, Salt Solvates, and Glassformers. In: Gaune-Escard, M. (eds) Molten Salts: From Fundamentals to Applications. NATO Science Series, vol 52. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0458-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0458-9_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0459-9

  • Online ISBN: 978-94-010-0458-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics