Skip to main content

Microwave Properties of Superconductors

  • Chapter
Microwave Superconductivity

Part of the book series: NATO Science Series ((NSSE,volume 375))

Abstract

This contribution describes the microwave properties of superconductors with emphasis on experimental data. Typical results for the surface impedance Zs are illustrated for Nb3Sn films on sapphire as a classical superconductor, and compared with those of high- temperature superconducting (HTS) YBa2Cu3O7−x films on LaAlO3, MgO, and CeO2- buffered sapphire substrates. Section 2 reviews the relation of Zs-measurements to the microscopic features of superconductors and describes systems suited to characterize unpatterned films. Section 3 provides data on the temperature dependence of Zs for both types of superconductors at low microwave field amplitudes (linear response). Analyzing features that depend on sample quality is crucial to distinguish between conventional and nonconventional pairing mechanisms. Section 4 describes the nonlinear microwave response of superconducting films. Models and analytical estimates of critical field levels lead to a distinction between different nonlinear mechanisms, and to approaches for material optimization. The inplications for a consistent theoretical under-standing and for microwave applications of HTS are summarized in Section 5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Parks R. D. (ed.), (1969) Superconductivity, Marcel Dekker, New York.

    Google Scholar 

  2. Waldram, J. (1996) Superconductivity of Metals and Cuprates, Inst. of Physics Publishing, Bristol.

    Google Scholar 

  3. Trunin, M. (1998) Temperature dependence of microwave surface impedance in high-Tc single crystals: Experimental and theoretical aspects, J. Supercond. 11, 381.

    Article  Google Scholar 

  4. Hein, M.A. (1999) High-Temperature Superconductor Thin Films at Microwave Frequencies, Springer Tracts in Modem Physics 155, Springer, Heidelberg.

    Google Scholar 

  5. Orlando, T.P., McNiff Jr., E.J., Foner, S., and Beasley, M.R. (1979) Critical fields, Pauli paramagnetic limiting, and material parameters of Nb3Sn and V3Si, Phys. Rev. B19, 4545–4561.

    Google Scholar 

  6. Cassinese, A., Hein, M.A., Hensen, S., and Müller, G. (2000) Effect of a temperature dependent effective quasiparticle mass on the surface impedance of YBa2Cu3O7−x, European Physical Journal B14, 605–610.

    Google Scholar 

  7. Tinkham, M. (1996) Introduction to Superconductivity, McGraw-Hill, New York.

    Book  Google Scholar 

  8. Turneaure, J.P., Halbritter, J., and Schwettman, H.A. (1991) The surface impedance of superconductors and normal conductors: The Mattis-Bardeen theory, J. Supercond. 4, 341–355.

    Article  Google Scholar 

  9. Portis, A.M. (1992) Electrodynamics of High-Temperature Superconductors, Lecture Notes in Physics, Vol. 48, Worid Scientific, Singapore.

    Google Scholar 

  10. Kresin, V.Z., Morawitz, H., and Wolf, S.A. (1993) Mechanisms of conventional and high-T c super-conductivity, Oxford University Press, New York.

    Google Scholar 

  11. Lancaster, M.J. (2000) Theory of RF superconductivity, contribution to this Summer School.

    Google Scholar 

  12. Talisa, S. (2000) Design of distributed 2d RF devices, ibid. Ref [11].

    Google Scholar 

  13. Chaloupka, H.J. (2000) Design of lumped-element 2d RF devices, ibid. Ref [11].

    Google Scholar 

  14. Mansour, R.R. (2000) HTS satellite applications, ibid. Ref [11].

    Google Scholar 

  15. Willemsen, B. (2000) HTS wireless applications, ibid. Ref [11].

    Google Scholar 

  16. Kolesov, S., Chaloupka, H., Baumfalk, A., and Kaiser, T. (1997) Planar HTS structures for high-power applications in communication systems, J. Supercond. 10, 179–187.

    Article  Google Scholar 

  17. Hong, J.S. Lancaster, M.J., Jedamzik, D., and Greed, R. B. (1998) 8-pole superconducting quasi-elliptic function filter for mobile communications application, IEEE MTT-S International Microwave Symposium, Baltimore, USA, June 1998.

    Google Scholar 

  18. Reppel, M., Chaloupka, H., Hong, J.S., Jedamzik, D., Uncaster, M., Mage, J.-C, Marcilhac, B. (1998) Superconducting preselect filters for base transceiver stations, in Proceedings of the ACTS Mobile Commun. Summit, Vol. 1, pp. 1–6.

    Google Scholar 

  19. Krupka, J., Geyer, R.G., Kuhn, M., and Hinken, J.H. (1994) Dielectric properties of single-crystals of AI2O3, LaAlO3, NdGaO3, SrTiO3, and MgO at cryogenic temperatures, IEEE Trans. Microwave Theory Techn. 42, 1886–1890.

    Article  Google Scholar 

  20. Zuccaro, C, Ghosh, I., Urban, K., Klein, N., Penn, S., and Alford, N. (1997) Materials for HTS-shielded dielectric resonators, IEEE Trans. Appl. Supercond. 7, 3715–3718; Zuccaro, C, Winter, M., Klein, N., and Urban, K (1997) Microwave absorption in single crystals of lanthanum aluminate, J. Appl. Phys. 82, 5695-5704.

    Article  Google Scholar 

  21. Hein, M.A., Aminov, B.A., Baumfalk, A., Chaloupka, H.J., Hill, F., Kaiser, T., Kolesov, S., Müller, G., and Piel H. (1997) High-power high-Q YBaCuO disk resonator filter, in H. Rogalla and D.H.A. Blank (eds), Applied Supercond 1997, IOP Publ., Bristol, No 158, p. 319.

    Google Scholar 

  22. Baumfalk, A., Chaloupka, H.J., Kolesov, S., Klauda, M., and Neumann, C. (1999) HTS power filters for output multiplexers in satellite communications, IEEE Trans. Appl. Supercond. 9, 2857–2861.

    Article  Google Scholar 

  23. Oates, D. E. (2000) Nonlinear behavior of HTS RF devices, ibid. Ref [11].

    Google Scholar 

  24. Newman, N. and Lyons, W.G. (1993) High temperature superconducting microwave devices — fundamental issues in materials, physics, and engineering, J. Supercond. 6, 119–160.

    Article  Google Scholar 

  25. Samoilova, T.B. (1995) Nonlinear microwave effects in thin superconducting films, Supercond. Sci. Technol. 8, 259–278.

    Article  Google Scholar 

  26. VanDuzer, T. and Turner, C.W. (1981) Principles of Superconductive Devices, Elsevier, Amsterdam, North-Holland.

    Google Scholar 

  27. Shen, Z. Y. (1994) HTS Microwave Circuits, Artech House, Boston.

    Google Scholar 

  28. Hinken, J. (1988) Supraleiterelektronik, Springer, Berlin.

    Google Scholar 

  29. Ruggiero, S.T. and Rudman, D.A. (eds), (1990) Superconducting Devices, Academic Press, New York.

    Google Scholar 

  30. Lancaster, M.J. (1997) Passive Microwave Device Applications of HTS, Cambridge University Press, Cambridge.

    Google Scholar 

  31. Anlage, S.M. (2000) Microwave HTS spatial probes, ibid. Ref [11].

    Google Scholar 

  32. Jenkins, A.P., Kale, K.S., and Dew-Hughes, D. (1996) Surface resistance measurement techniques, in A. V. Narlikar (ed.), Studies of HTS, Nova Sciences, New York, vol. 17, pp. 179–219.

    Google Scholar 

  33. Mazierska, J. (1997) Dielectric resonator as a possible standard for characterization of high temperature superconducting films for microwave applications, J. Supercond. 10, 73–84.

    Article  Google Scholar 

  34. Pond, J. (2000) Microwave measurements at cryogenic temperatures, ibid. Ref [11].

    Google Scholar 

  35. Hensen, S., Müller, G., Rieck, CT., and Schamberg, K. (1997) In-plane surface impedance of epitaxial YBa2Cu3O7−x films: Comparison of experimental data taken at 87 GHz with d-and s-wave models of superconductivity, Phys. Rev. B56, 6237–6264.

    Google Scholar 

  36. Kaiser, T., Diete, W., Getta, M., Hein, M.A., Müller, G., Perpeet, M., and Piel, H. (1998) Niobium shielded sapphire resonator for field-dependent surface resistance measurements of superconducting films. Particle Accel. 60, 171–182.

    Google Scholar 

  37. Labbé, J. and Priedel, J. (1966) Instabilité électronique et changement de phase cristalline des composés du type V3Si a basse température, J. de Physique 27, 153–165; (1966) Effet de la température sur l’instabilité électronique et le changement de phase cristalline des composés du type V3Si a basse température, J. de Physique 27, 303–308.

    Article  Google Scholar 

  38. Perpeet, M., Hein, M.A., Müller, G., Piel, H., Pouryamout, J., and Diete, W. (1997) High-quahty Nb3Sn films on sapphire prepared by tin vapor diffusion, J. Appl Phys. 82, 5021.

    Article  Google Scholar 

  39. Perpeet, M. (1999) Analysen zur Wechselwirkung phasenreiner und Ti-dotierter Nb3Sn Filme auf Saphir mit elektromagnetischen Feldern im Mikrowellenbereich, Dissertation, Universität Wuppertal, WUB-DIS 99–18.

    Google Scholar 

  40. Marsiglio, F., Carbotte, J.P., Akis, R., Achkir, D. and Poirier, M. (1994) Eliashberg treatment of the microwave conductivity of niobium, Phys. Rev. B50, 7203–7206.

    Google Scholar 

  41. Perpeet, M., Cassinese, A., Hein, M.A., Kaiser, T., Müller, G., Piel, H., Pouryamout, J. (1999) Nb3Sn films on sapphire — a promising alternative for superconductive microwave technology, IEEE Trans. Appl. Supercond. 9, 2496–2499.

    Article  Google Scholar 

  42. Flükiger, R., Küpfer, H., Jorda, J.L., and Muller, J. (1987) Effect of atomic ordering and composition changes on the electrical resistivity of Nb3Al, Nb3Sn, Nb3Ge, Nb3Ir, V3Si and V3Ga, IEEE Trans. Magn. 23, 980.

    Article  Google Scholar 

  43. Hardy, W.N., Kamal, S., and Bonn, D.A. (1998) Magnetic penetration depth in cuprates: a short review of measurement techniques and results, in J. Bok, G. Deutscher, D. Pavuna, and S.A. Wolf (eds), The gap symmetry and fluctuations in high-T c superconductors NATO-ASI Series B: Physics, Plenum Press, New York, vol. 371.

    Google Scholar 

  44. Bonn, D.A., Kamal, S., Liang, R., Hardy, W.N., Homes, C.C., Basov, D.N., and Timusk, T. (1996) Surface impedance studies of YBCO, Czech. J. Phys. 46, 3195.

    Article  Google Scholar 

  45. Hein, M.A. (1998) in A. K. M. A. Islam (ed.), Physics and applications of high-Tc superconductors at microwave frequencies, International workshop on high-temperature superconductors, Rajshahi-University, Bangladesh, ISBN 984-31-0393-9, pp. 180–213.

    Google Scholar 

  46. Hein, M.A., Kaiser, T., and Müller, G. (2000) Surface resistance of epitaxial YBa2Cu307−x films on various substrates: Effects of pair condensation and quasiparticle scattering, Phys.Rev. B61, 640–647.

    Google Scholar 

  47. Kaiser, T. (1998) Nichtlineare Hochfrequenzeigenschaften von Hochtemperatursupraleiter-Filmen, Dissertation, Universität Wuppertal, Report WUB-DIS 98-13.

    Google Scholar 

  48. Hein, M.A., Cassinese, A., Hensen, S., Kaiser, T., Müller, G., and Perpeet, M. (1999) Pair and quasiparticle States of YBa2Cu3O7−x deduced from the surface impedance and a comparison with Nb3Sn, J. Supercond. 12, 129–138.

    Article  Google Scholar 

  49. Bonn, D.A., Liang, R., Risemann, T.M., Baar, D.J., Morgan, D.C., Zhang, K., Dosanjh, P., Duty, T.L., MacFarlane A., Morris, G.D., Brewer, J.H., and Hardy, W.N. (1993) Microwave determination of the quasiparticle scattering time in YBa2Cu3O6+x, Phys. Rev. B47, 11314–11328.

    Google Scholar 

  50. Dähne, U., Goncharov, Y., Klein, N., Tellmann, N., Kozlov, G., and Urban, K, (1995) Frequency and temperature dependence of the mm-wave conductivity of epitaxial YBa2Cu3O7 films, J. Supercond. 8, 129–134.

    Article  Google Scholar 

  51. Zaitsev, A.G., Ockenfuss, G., Guggi, D., Wördenweber, R., and Krüger, U. (1997) Structural perfection of (001) CeO2 thin films on (1102) sapphire, J. Appl. Phys. 81, 3069–3072.

    Article  Google Scholar 

  52. Kinder, H., Berberich, P., Utz, B., and Prusseit, W. (1995) Double-sided YBCO films on 4 substrates by thermal evaporation, IEEE Trans. Appl. Supercond. 5, 1575–1580.

    Article  Google Scholar 

  53. Humphreys, R.G., Satchell, J.S., Chew, N.G., Edwards, J.A., Goodyear, S.W., Blekinsop, S.E., Dosser, O.D., and Cullis, A.G. (1990) Physical vapour deposition techniques for the growth of YBa2Cu3O7 thin films, Supercond Sci. Technol. 3, 38–52.

    Article  Google Scholar 

  54. Cassinese, A., Getta, M., Hein, M., Kaiser, T., Kürschner, H.G., Lehndorff, B., Müller, G., and Piel, H. (1999) Scanning Hall probe measurements on single-and double-sided sputtered YBCO films for microwave applications, IEEE Trans. Appl. Supercond. 9, 1960–1963.

    Article  Google Scholar 

  55. Mourachkine, A.P. and Barel, A.R.F. (1996) Microwave penetration depth measurement in high-Tc superconductos, in A. Narlikar (ed.), Studies of high-temperature superconductors. Nova Sciences, New York, Vol. 17, p. 221–246.

    Google Scholar 

  56. Klein, N., Tellmann, N., Schulz, H., Urban, K., Wolf, S.A., and Kresin, V.Z. (1993) Evidence of two-gap s-wave superconductivity in YBa2Cu307−x from microwave surface impedance measurements, Phys. Rev. Lett. 71, 3355–3358.

    Article  Google Scholar 

  57. Anlage, S.M. and Wu, D. H. (1992) Magnetic penetration depth measurements in cuprate superconductors, J. Supercond. 5, 395–402.

    Article  Google Scholar 

  58. Gasparov, V.A., Mkrtchyan, M.R., Obolensky, M.A., and Bondarenko, A.V. (1994) Anomalous temperature dependence of the electromagnetic penetration depth of YBa2Cu3O7−δ crystals, Physica C 231, 197–206.

    Article  Google Scholar 

  59. Klein, N., Müller, G., Piel, H., and Schurr, J. (1989) Superconducting microwave resonators for physics experiments, IEEE Trans. Magn. 25, 1362–1365.

    Article  Google Scholar 

  60. Müller, G., Klein, N., Brust, A., Chaloupka, H., Hein, M., Orbach, S., Piel, H., and Reschke, D. (1990) Survey of microwave surface impedance data of high-Tc superconductors — evidence for nonpairing charge carriers, J. Supercond. 3, 235.

    Article  Google Scholar 

  61. Vendik, O.G., Kozyrev, A.B., and Popov, A.Yu. (1990) Properties of high-Tc superconductors at RF and microwaves — experimental data and some model notions, Revue Phys. Appl. 25, 255–263.

    Article  Google Scholar 

  62. Halbritter, J. (1990) RF residual losses, surface impedance, and granularity in superconducting cuprates, J. Appl. Phys. 68, 6315–6326; and (1992) On extrinsic effects in the surface impedance of cuprate super-conductors by weak links, J. Appl. Phys. 71, 339-343.

    Article  Google Scholar 

  63. Hirschfeld, P.J., Puttika, W.O., and Scalapino, D.J. (1993) Microwave conductivity of d-wave supercon-ductors, Phys. Rev. Lett. 71, 3705–3708.

    Article  Google Scholar 

  64. Lee, P.A. (1993) Localized states in a d-wave superconductor, Phys. Rev. Lett. 71, 1887–1890.

    Article  Google Scholar 

  65. Keskin, E., Numssen, and Halbritter, J. (1999) Defects in YBCO relevant for RF superconductivity, IEEE Trans. Appl. Supercond. 9, 2452–2455.

    Article  Google Scholar 

  66. Scalapino, D.J. (1995) The case for dx2−y2 pairing in the cuprate superconductors, Phys. Rep. 250, 329–365.

    Article  Google Scholar 

  67. Beasley, M.R. (1995) Recent progress in high-Tc superconductivity — what would make a difference, IEEE Trans. Appl. Supercond. 5, 141–151.

    Article  Google Scholar 

  68. Adrian, S.D., Reeves, M.E., Wolf, S.A., and Kresin V.Z. (1995) Penetration depth in layered supercon-ductors: Application to the cuprates and conventional multilayers, Phys. Rev. B51, 6800–6803.

    Google Scholar 

  69. Golubov, A.A., Trunin, M.R., Zhukov, A.A., Dolgov, O.V., and Shulga, S.V. (1996) Comparative description of the microwave surface impedance of Nb, BaKBiO and YBaCuO, J. Phys. I France, 6, 2275–2290.

    Article  Google Scholar 

  70. Eliashberg, G.M., Klimovitch, G.V., and Rylyakov, A.V. (1991) On the temperature dependence of the London penetration depth, J. Supercond. 4, 393–396.

    Article  Google Scholar 

  71. Carbotte, J.P. (1990) Properties of boson-exchange superconductors. Rev. Mod. Phys. 62, 1027–1157.

    Article  Google Scholar 

  72. Zhang, K, Bonn, D.A., Kamal, S., Liang, R., Baar, D.J., Hardy, W.N., Basov, D., and Timusk, T. (1994) Measurement of the ab plane anisotropy of microwave surface impedance of untwinned YBa2Cu3O6.95 single crystals, Phys. Rev. Lett. 73, 2484; Hosseini, A., Kamal, S., Bonn, D.A., Liang, R., and Hardy, W.N. (1998) c-axis electrodynamics of YBa2Cu3O7−x, Phys. Rev. Lett. 81, 1298.

    Article  Google Scholar 

  73. Bonn, D.A., Kamal, S., Zhang, K., Liang, R., Baar, D.J., Klein, E., and Hardy, W.N. (1994) Comparison of the influence of Ni and Zn impurities on the electromagnetic properties of YBa2Cu3O6.95, Phys. Rev. B50, 4051–4063.

    Google Scholar 

  74. Locquet, J.P., Ferret, J., Fompeyrine, J., Mächler, E., Seo, J.W., and VanTendeloo, G. (1998) Doubling the critical temperature of La1.9Sr0.1CuO4 using epitaxial strain. Nature 394, 453–456.

    Article  Google Scholar 

  75. Schüller, I.K. (1998) Superconductivity — strain yourself, Nature 394, 419–420.

    Article  Google Scholar 

  76. Kresin, V.Z., Bill, A., Wolf, S.A., and Ovchinnikov, Yu.N. (1998) High T c oxides: two order parameters, magnetic scattering and upper limit of Tc, novel isotope effects, and the phonon-plasmon mechanism, The gap symmetry and fluctuations in high-T c superconductors ibid. Ref. [43].

    Google Scholar 

  77. Kresin, V.Z., Wolf, S.A., and Ovchinnikov, Yu.N. (1996) Effect of pressure on Tc and the “intrinsic” Tc of cuprates, Phys. Rev. B53, 11831.

    Google Scholar 

  78. Hirschfeld P.J. and Goldenfeld, N. (1993) Effect of strong scattering on the low-temperature penetration depth of a d-wave superconductor, Phys. Rev. B48, 4219–4222.

    Google Scholar 

  79. Hu, CR. (1994) Midgap surface states as a novel signature for dx2−dy2-wave superconductivity, Phys. Rev. Lett. 72, 1526–1529.

    Article  Google Scholar 

  80. Matsumoto, M. and Shiba, H. (1995) On boundary effects in d-wave superconductors, J. Phys. Soc. Jpn. 64, 1703; (1995) Coexistence of different symmetry order parameters near a surface in d-wave supercon-ductors I, 64, 3384; (1995) Coexistence of different symmetry order parameters near a surface in d-wave superconductors II, 64, 4867.

    Article  Google Scholar 

  81. A controversial discussion of this topic can be found in the Proceedings of the “Euroconf. on Polarons: Condensation, Pairing, Magnetism”, Erice, Italy, in (1999) J. Supercond. 12, No. 1, special issue.

    Google Scholar 

  82. Dahm, T. and Scalapino, D.J. (1997) Theory of intermodulation in a superconducting microstrip resonator, J. Appl. Phys. 81, 2002–2009.

    Article  Google Scholar 

  83. Dahm, T., and Scalapino, D.J. (1998), Analysis and optimization of intermodulation in high-Tc super-conducting microwave filter design, IEEE Trans. Appl. Supercond. 8, 149–157.

    Article  Google Scholar 

  84. Dahm, T., (1999) MPI Dresden, Germany, private communication.

    Google Scholar 

  85. Halbritter, J. (1998) Nonlinear surface impedance in “low” and “high” Tc superconductors, J. Supercond. 10, 91–96.

    Article  Google Scholar 

  86. Wosik, J., Xie, L.M., Grabovickic, R., Hogan, T., and Long, S.A. (1999) Microwave power handling capability of HTS superconducting thin films: weak links and thermal effects induced limitations, IEEE Trans Appl. Supercond. 9, 2456–2459.

    Article  Google Scholar 

  87. Aminov, B.A., Piel, H., Hein, M.A., Kaiser, T., Müller, G., Baumfalk, A., Chaloupka, H.J., Kolesov, S., Medelius, H., and Wikborg, E. (1999) YBaCuO disk resonator filters operating at high power, IEEE Trans. Appl. Supercond. 9, 4185–4188.

    Article  Google Scholar 

  88. Barone, A. and Paterno, G. (1982) Physics and Applications of the Josephson effect, Wiley, New York.

    Book  Google Scholar 

  89. Habib, Y.M., Oates, D.E., Dresselhaus, G., Dresselhaus, M.S., Vale, L.R., and Ono, R.H. (1998) Microwave power handling in engineered YBa2Cu3O7−x grain boundaries, Appl Phys. Lett. 73, 2200–2202.

    Article  Google Scholar 

  90. Padamsee, H. (1983) Calculations for breakdown induced by large defects in superconducting Nb cavities, IEEE Trans. Magn. 19, 1322.

    Article  Google Scholar 

  91. Nguyen, P.P., Oates, D.E., Dresselhaus, G., and Dresselhaus, M.S. (1993) Nonlinear surface impedance of YBa2Cu3O7−x thin films: measurements and a coupled-grain model, Phys. Rev. B48, 6400.

    Google Scholar 

  92. Kaiser, T., Aminov, B.A., Baumfalk, A., Cassinese, A., Chaloupka, H.J., Hein, M.A., Kolesov, S., Medelius, H., Müller, G., Perpeet, M., Piel, H., and Wikborg, E. (1999) Nonlinear power handling of YBa2Cu307−x films and microwave devices, J. Supercond. 12, 343–351.

    Article  Google Scholar 

  93. Xin, H., Oates, D.E., Anderson, A.C., Slattery, R.L., Dresselhaus, G., and Dresselhaus, M.S. (1999) Comparison of power dependence of microwave surface resistance of unpatterned and patterned YBCO thin films, preprint.

    Google Scholar 

  94. Kästner, G., Schäfer, C, Senz, S., Kaiser, T., Hein, M., Lorenz, M., Hochmuth, H., and Hesse, D. (1999) Microstructure and microwave surface resistance of typical YBaCuO thin films on sapphire and LaAlO3, Supercond Sci. Technol. 12, 366–375.

    Article  Google Scholar 

  95. Cody, G.D., and Cohen, R.W. (1964) Thermal conductivity of Nb3Sn, Rev. Mod. Phys. 36, 121.

    Article  Google Scholar 

  96. Zaitsev, A.B., Kutzner, R., Wördenweber, R., Kaiser, T., Hein, M.A., and Müller, G. (1998) Large-area YBa2Cu3O7−x films on sapphire with excellent microwave power handling capability, J. Supercond. 11, 361–365.

    Article  Google Scholar 

  97. Porch, A., Avenhaus, B. Wellhöfer, F., and Woodall, P. (1995) Microwave surface resistance of unpatterned and patterned YBa2Cu3O7−δ thin films produced by pulsed laser deposition, in D. Dew-Hughes (ed.). Applied Supercond. 1995, IOP Publ., Bristol, No 148, p. 1039.

    Google Scholar 

  98. Lorenz, M., Hochmuth, H., Natusch, D., Börner, H., Lippold, G., and Kreher, K. (1996) Large-area double-sided pulsed laser deposition of YBa2Cu3O7−x thin films on 3-in. sapphire wafers, Appl. Phys. Lett. 68, 3332–3334.

    Article  Google Scholar 

  99. Kästner, G., Hesse, D., Lorenz, M., Scholz, R., Zakharov, N.D., and Kopperschmidt, P. (1995) Microcracks observed in epitaxial thin films of YBa2Cu3O7−δ and GdBa2Cu3O7−δ, Phys. Status Solidi a 150, 381–394.

    Article  Google Scholar 

  100. Olsson, E., Gupta, A., Thouless, M.D., Segmüller, A., and Clarke, D.R. (1991) Crack formation in epitaxial [110] thin films of YBa2Cu3O7−x and PrBa2Cu3O7−x on [110] SrTi03 substrates, Appl. Phys. Lett. 58, 1682–1684.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hein, M.A. (2001). Microwave Properties of Superconductors. In: Weinstock, H., Nisenoff, M. (eds) Microwave Superconductivity. NATO Science Series, vol 375. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0450-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0450-3_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0446-9

  • Online ISBN: 978-94-010-0450-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics