Near-Field Microwave Microscopy of Materials Properties

  • Steven M. Anlage
  • D. E. Steinhauer
  • B. J. Feenstra
  • C. P. Vlahacos
  • F. C. Wellstood
Part of the NATO Science Series book series (NSSE, volume 375)

Abstract

Near-field microwave microscopy has created the opportunity for a new class of electrodynamics experiments of materials. Freed from the constraints of traditional microwave optics, experiments can be carried out at high spatial resolution over a broad frequency range. In addition, the measurements can be done quantitatively so that images of microwave materials properties can be created. We review the five major types of near-field microwave microscopes and discuss our own form of microscopy in detail. Quantitative images of microwave sheet resistance, dielectric constant, and dielectric tunability are presented and discussed. Future prospects for near-field measurements of microwave electrodynamic properties are also presented.

Keywords

Permeability Vortex Microwave Anisotropy Mercury 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. B. Pippard, “The surface impedance of superconductors and normal metals at high frequencies: I. Resistance of superconducting tin and mercury at 1200 Mcyc./sec,” Proc. Roy. Soc. A 191, 370–384 (1947).CrossRefGoogle Scholar
  2. 2.
    J. C. Slater, “Microwave Electronics,” Rev. Mod. Phys. 18, 441–521 (1946); L. C. Maier, Jr. and J. C. Slater, “Field Strength Measurements in Resonant Cavities,” J. Appl. Phys. 23, 68–83 (1952).MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    O. Klein, S. Donovan, M. Dressel, and G. Grüner, “Microwave Cavity Perturbation Technique: Part I: Principles,” Int. J. Infrared and Millimeter Waves 14, 2423–2457 (1993); S. Donovan, O. Klein, M. Dressel, K. Holczer, and G. Grüner, “Microwave Cavity Perturbation Technique: Part II: Experimental Scheme,” Int. J. Infrared and Millimeter Waves 14, 2459–2487 (1993); M. Dressel, O. Klein, S. Donovan, and G. Grüner, “Microwave Cavity Perturbation Technique: Part III: Applications,” Int. J. Infrared and Millimeter Waves 14, 2489–2517 (1993).Google Scholar
  4. 4.
    H. Ning, H. Duan, P. D. Kirven, A. M. Hermann, and T. Datta, “Magnetic Penetration Depth in High-Tc Superconducting Tl2Ca1Ba2Cu2O8−δ Single Crystals,” J. Super. 5, 503–509 (1992).CrossRefGoogle Scholar
  5. 5.
    C. E. Gough, and N. J. Exon, “Microwave response of anisotropic high-temperature-superconductor crystals,” Phys. Rev. B 50, 488–495 (1994).CrossRefGoogle Scholar
  6. 6.
    R. C. Taber, “A parallel plate resonator technique for microwave loss measurements on superconductors,” Rev. Sci. Instrum. 61, 2200–2206 (1990).CrossRefGoogle Scholar
  7. 7.
    V. V. Talanov, L. V. Mercaldo, S. M. Anlage and J. H. Claassen, “Measurement of the absolute penetration depth and surface resistance of superconductors and normal metals with the variable spacing parallel plate resonator,” to be published in Rev. Sci. Instrum. (2000).Google Scholar
  8. 8.
    John Gallop, L. Hao, F. Abbas, “Spatially Resolved Measurements of HTS Microwave Surface Impedance,” Physica C 282–287, 1579–1580 (1997); L. Hao, J. C. Gallop, “Spatially Resolved Measurements of HTS Microwave Surface Impedance,” IEEE Trans. Appl. Supercond. 9, 1944–1947 (1999).CrossRefGoogle Scholar
  9. 9.
    C. Wilker, Z-Y. Shen, V. X. Nguyen, and M. S. Brenner, “A sapphire resonator for microwave characterization of superconducting thin films,” IEEE Trans. Appl. Supercond. 3, 1457–1460 (1993).CrossRefGoogle Scholar
  10. 10.
    Steve Hogan, Sigurd Wagner, and Frank S. Barnes, “Resistivity measurement of thin semiconductor films on metallic substrates,” Appl. Phys. Lett. 35, 77–79 (1979).CrossRefGoogle Scholar
  11. 11.
    J. S. Martens, V. M. Hietala, D. S. Ginley, T. E. Zipperian, and G. K. G. Hohenwarter, “Confocal resonators for measuring the surface resistance of high-temperature superconducting films,” Appl. Phys. Lett. 58, 2543–2545 (1991).CrossRefGoogle Scholar
  12. 12.
    E. Keskin, K. Numssen, and J. Halbritter, “Defects in YBCO relevant for rf superconductivity: T-, f-and H-dependencies,” IEEE Trans. Appl. Supercon. 9, 2452 (1999).CrossRefGoogle Scholar
  13. 13.
    E. F. Skelton, A. R. Drews, M. S. Osofsky, S. B. Qadri, J. Z. Hu, T. A. Vanderah, J. L. Peng, and R. L. Greene, “Direct observation of Microscopic inhomogeneities with energy-dispersive diffraction of synchrotron-produced x-rays,” Science 263, 1416–1418 (1994).CrossRefGoogle Scholar
  14. 14.
    A. F. Hebard, A. T. Fiory, M. P. Siegal, J. M. Phillips, and R. C. Haddon, “Vortex-pair nucleation at defects: A mechanism for anoalous temperature dependence in the superconducting screening length,” Phys. Rev. B 44, 9753–9756 (1991).CrossRefGoogle Scholar
  15. 15.
    G. Hampel, B. Batlogg, K. Krishana, N. P. Ong, W. Prusseit, H. Kinder, A. C. Anderson, “Third-order nonlinear microwave response of YBa2Cu3O7−δ thin films and single crystals,” Appl. Phys. Lett. 71, 3904–3906 (1997).CrossRefGoogle Scholar
  16. 16.
    C. P. Bidinosti, W. N. Hardy, D. A. Bonn, and R. Liang, “Measurements of the Magnetic Field Dependence of 1 in YBa2Cu3O6.95 Results as a Function of Temperature and Field Orientation,” Phys. Rev. Lett. 83, 3277–3280 (1999).CrossRefGoogle Scholar
  17. 17.
    A. Carrington, R. W. Giannetta, J. T. Kim, and J. Giapintzakis, “Absence of non-linear Meissner effect in YBa2Cu3O6.95,” Phys. Rev. B 59, R14173–14176 (1999).CrossRefGoogle Scholar
  18. 18.
    E. A. Synge, “A suggested method for extending microscopic resolution into the ultra-microscopic region,” Phil. Mag. C 6, 356–362 (1928).Google Scholar
  19. 19.
    Zdenek Frait, “The use of high frequency modulation in studying ferromagnetic resonance,” Czeck. J. Phys. 9, 403–404 (1959); Z. Frait, V. Kambersky, Z. Malek, and M. Ondris, “Local variations of uniaxial anisotropy in thin films,” Czeck. J. Phys. B10, 616–617 (1960).CrossRefGoogle Scholar
  20. 20.
    R. F. Soohoo, “A Microwave Magnetic Microscope,” J. Appl. Phys. 33, 1276–1277 (1962).CrossRefGoogle Scholar
  21. 21.
    S. E. Lofland, S. M. Bhagat, H. L. Ju, G. C. Xiong, T. Venkatesan, and R. L. Greene, “Ferromagnetic resonance and magnetic homogeneity in a giant-magnetoresistance material La2/3Ba1/3MnO3,” Phys. Rev. B 52, 15058–15061 (1995).CrossRefGoogle Scholar
  22. 22.
    M. Ikeya and T. Miki, “ESR Microscopic Imaging with Microfabricated Field Gradient Coils,” Jap. J. Appl. Phys. 26, L929–L931 (1987); M. Ikeya, M. Furusawa, and M. Kasuyai, “Near-field scanning electron spin resonance microscopy,” Scanning Microscopy 4, 245–248 (1990).CrossRefGoogle Scholar
  23. 23.
    E. A. Ash and G. Nicholls, “Super-resolution Aperture Scanning Microscope,” Nature 237, 510–512 (1972).CrossRefGoogle Scholar
  24. 24.
    D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).CrossRefGoogle Scholar
  25. 25.
    E. Betzig, M. Isaacson and A. Lewis, “Collection mode near-field scanning optical microscopy,” Appl. Phys. Lett. 51, 2088–2090 (1987).CrossRefGoogle Scholar
  26. 26.
    C. A. Bryant and J. B. Gunn, “Noncontact Technique of the Local Measurement of Semiconductor Resistivity,” Rev. Sci. Instrum. 36, 1614–1617 (1965).CrossRefGoogle Scholar
  27. 27.
    Y. S. Xu and R. G. Bosisio, “Nondestructive Measurements of the Resistivity of Thin Conductive Films and the Dielectric Constant of Thin Substrates Using an Open-Ended Coaxila Line,” IEE Proc. H 139, 500–506 (1992).Google Scholar
  28. 28.
    M. A. Stuchly and S. S. Stuchly, “Coaxial Line Reflection Methods for Measuring Dielectric Properties of Biological Substances at Radio and Microwave Frequencies — A Review,” IEEE Trans. Instrum. and Meas. IM-29, 176–183 (1980); M. A. Stuchly, M. M. Brady, S. S. Stuchly and G. Gajda, “Equivalent Circuit of an Open-Ended Coaxial Line in a Lossy Dielectric,” IEEE Trans. Instrum. and Meas. IM-31, 116–119 (1982); T. W. Athey, M. A. Stuchly and S. S. Stuchly, “Measurement of Radio Frequency Permittivity of Biological Tissues with an Open-Ended Coaxial Line: Part I,” IEEE Trans. Microwave Theory and Tech. MTT-30, 82–86 (1982); M. A. Stuchly, T. W. Athey, G. M. Samaras and G. E. Taylor, “Measurement of Radio Frequency Permittivity of Biological Tissues with an Open-Ended Coaxial Line: Part II — Experimental Results,” IEEE Trans. Microwave Theory and Tech. MTT-30, 87–92 (1982); G. B. Gajda and S. S. Stuchly, “Numerical Analysis of Open-Ended Coaxial Lines,” IEEE Trans. Microwave Theory and Tech. MTT-31, 380–384 (1983).CrossRefGoogle Scholar
  29. 29.
    E. C. Burdette, F. L. Cain, and J. Seals, “In Vivo Probe Measurement Technique for Determining Dielectric Properties at VHF Through Microwave Frequencies,” IEEE Trans. Microwave Theory Tech. MTT-28, 414–427 (1980).CrossRefGoogle Scholar
  30. 30.
    M. Fee, S. Chu and T. W. Hänsch, “Scanning electromagnetic transmission line microscope with sub-wavelength resolution,” Optics Communications 69, 219–224 (1989).CrossRefGoogle Scholar
  31. 31.
    S. J. Stranick and P. S. Weiss, “A versatile microwave-frequency-compatible scanning tunneling microscope,” Rev. Sci. Instrum. 64, 1232–1234 (1993); S. J. Stranick and P. S. Weiss, “A tunable microwave frequency alternating current scanning tunneling microscope,” Rev. Sci. Instrum. 65, 918–921 (1994); L. A. Bumm and P. S. Weiss, “Small cavity nonresonant tunable microwave-frequency alternating current scanning tunneling microscope,” Rev. Sci. Instrum. 66, 4140–4145 (1995).CrossRefGoogle Scholar
  32. 32.
    G. Q. Jiang, W. H. Wong, E. Y. Raskovich, W. G. Clark, W. A. Hines, J. Sanny, “Open-ended coaxial-line technique for the measurement of the microwave dielectric constant for low-loss solids and liquids,” Rev. Sci. Instrum. 64, 1614–1621 (1993).CrossRefGoogle Scholar
  33. 33.
    K. Asami, “The scanning dielectric microscope,” Meas. Sci. Technol. 5, 589–592 (1994).CrossRefGoogle Scholar
  34. 34.
    R. J. Gutman and J. M. Borrego, “Microwave scanning microscopy for planar structure diagnostics,” IEEE MTT Digest, 281–284 (1987); Bhimnathwala and J. M. Borrego, “Measurement of the sheet resistance of doped layers in semiconductors by microwave reflection,” J. Vac. Sci. Technol. B 12, 395–398 (1994).Google Scholar
  35. 35.
    N. Qaddoumi and R. Zoughi, “Preliminary study of the influences of effective dielectric constant and nonimiform probe apeture field distribution on near field microwave images,” Materials Evaluation, Oct., 1169–1173 (1997).Google Scholar
  36. 36.
    M. Golosovsky and D. Davidov, “Novel millimeter-wave near-field resistivity microscope,” Appl. Phys. Lett. 68, 1579–1581 (1996); M. Golosovsky, A. Galkin, and D. Davidov, “High-Spatial Resolution Resistivity Mapping of Large-Area YBCO Films by a Near-Field Millimeter-Wave Microscope,” IEEE MTT 44, 1390–1392 (1996); M. Golosovsky, A. Lann, and D. Davidov, “A millimeter-wave near-field scanning probe with an optical distance control,” Ultramicroscopy 71, 133–141 (1998); A. F. Lann, M. Golosovsky, D. Davidov, and A. Frenkel, “Combined millimeter-wave near-field microscope and capacitance distance control for the quantitative mapping of sheet resistance of conducting layers,” Appl. Phys. Lett. 73, 2832–2834 (1998); A. F. Lann, M. Golosovsky, D. Davidov, and A. Frenkel, “Microwave near-field polarimetry,” Appl. Phys. Lett. 75, 603–605 (1999).CrossRefGoogle Scholar
  37. 37.
    J. Bae, T. Okamoto, T. Fujii, K. Mizuno, T. Nozokido, “Experimental demonstration for scanning near-field optical microscopy using a metal micro-slit probe at millimeter wavelengths,” Appl. Phys. Lett. 71, 3581–3583 (1997).CrossRefGoogle Scholar
  38. 38.
    M. Tabib-Azar, N. Shoemaker and S. Harris, “Non-destructive characterization of materials by evanescent microwaves,” Meas. Sci. Tech., 4, 583–590 (1993); M. Tabib-Azar, D.-P. Su, A. Pohar, S. R. LeClair, and G. Ponchak, “0.4 μm spatial resolution with 1 GHz (λ=30 cm) evanescent microwave probe,” Rev. Sci. Instrum., 70, 1725–1729 (1999); M. Tabib-Azar, P. S. Pathak, G. Ponchak, and S. LeClair, “Non-destructive superresolution imaging of defects and nonuniformities in metals, semiconductors, dielectrics, composites, and plants using evanescent microwaves,” Rev. Sci. Instrum., 70, 2783–2792 (1999); M. Tabib-Azar, R. Ciocan, G. Ponchak, and S. R. LeClair, “Transient thermography using evanescent microwave microscope,” Rev. Sci. Instrum., 70, 3387–3390 (1999); G. Ponchak, D. Akinwande, R. Ciocan, S. R. LeClair and M. Tabib-Azar, “Evanescent Microwave Probes Using Coplanar Waveguide and Stripline for Super-Resolution Imaging of Materials,” IEEE MTT-S Digest, (1999).CrossRefGoogle Scholar
  39. 39.
    F. Keilmann, US Patent 4,994,818, filed Oct. 27, 1989; R. Merz, F. Keilmann, R. J. Haug, and K. Ploog, “Nonequilibrium Edge-State Transport Resolved by Far-Infrared Microscopy,” Phys. Rev. Lett. 70, 651–653 (1993); F. Keilmann, “FIR Microscopy,” Infrared Phys. Technol. 36, 217–224 (1995); F. Keilmann, D. W. van der Weide, T. Eickelkamp, R. Merz, and D. Stöckle, “Extreme sub-wavlength resolution with a scanning radio-frequency transmission microscope,” Optics Commun. 129, 15–18 (1996); B. Knoll, F. Keilmann, A. Kramer, and R. Guckenberger, “Contrast of microwave near-field microscopy,” Appl. Phys. Lett. 70, 2667–2669 (1997).Google Scholar
  40. 40.
    R. G. Bosisio, M. Giroux, and D. Couderc, “Paper Sheet Moisture Measurements by Microwave Phase Perturbation Techniques,” J. Microwave Power 5, 25–34 (1970).Google Scholar
  41. 41.
    E. Tanabe and W. T. Joines, “A Nondestructive Method for Measuring the Complex Permittivity of Dielectric Materials at Microwave Frequencies Using an Open Transmission Line Resonator,” IEEE Trans. Instrum. and Meas. IM-25, 222–226 (1976).CrossRefGoogle Scholar
  42. 42.
    Y. Cho, A. Kirihara and T. Saeki, “Scanning nonlinear dielectric microscope,” Rev. Sci. Instrum. 67, 2297–2303 (1996); Y. Cho, S. Kazuta, and K. Matsuura, “Scanning nonlinear dielectric microscopy with nanometer resolution,” Appl. Phys. Lett. 75, 2833–2835 (1999).CrossRefGoogle Scholar
  43. 43.
    T. Wei, X.-D. Xiang, W. G. Wallaee-Preedman and P. G. Schultz, “Scanning tip microwave near-field microscope,” Appl. Phys. Lett. 68, 3506–3508 (1996); Y. Lu, T. Wei, F. Duewer, Y. Lu, N. Ming, P. G. Schultz and X.-D. Xiang, “Nondestructive Imaging of Dielectric-Constant Profiles and Ferroelectric Domains with a Scanning-Tip Microwave Near-Field Microscope,” Science 276, 2004–2006 (1997); C. Gao, T. Wei, F. Duewer, Y. Lu and X.-D. Xiang, “High spatial resolution quantitative microwave impedance microscopy by a scanning tip microwave near-field microscope,” Appl. Phys. Lett. 71, 1872–1874 (1997); I. Takeuehi, T. Wei, F. Duewer, Y. K. Yoo, X.-D. Xiang, V. Talyansky, S. P. Pai, G. J. Chen, and T. Venkatesan, “Low temperature scanning-tip microwave near-field microscopy of YBCO films,” Appl. Phys. Lett. 71, 2026–2028 (1997); H. Chang, C. Gao, I. Takeuehi, Y. Yoo, J. Wang, P. G. Schultz, X.-D. Xiang, R. P. Sharma, M. Downes, and T. Venkatesan, “Combinatorial synthesis and high throughput evaluation of ferroelectric/dielectric thin-film Hbraries for microwave applications,” Appl. Phys. Lett. 72, 2185–2187 (1998); C. Gao, and X.-D. Xiang, “Quantitative microwave near-field microscopy of dielectric properties,” Rev. Sci. Instrum. 69, 3846–3851 (1998).CrossRefGoogle Scholar
  44. 44.
    C. P. Vlahacos, R. C. Black, S. M. Anlage and F. C. Wellstood, “Near-field Scanning Microwave Microscope with 100 μm Resolution,” Appl. Phys. Lett. 69, 3272–3274 (1996).CrossRefGoogle Scholar
  45. 45.
    Steven M. Anlage, C. P. Vlahacos, Sudeep Dutta, and F. C. Wellstood, “Scanning Microwave Microscopy of Active Superconducting Microwave Devices,” IEEE Trans. Appl. Supercond. 7, 3686–3689 (1997).CrossRefGoogle Scholar
  46. 46.
    D. E. Steinhauer, C. P. Vlahacos, Sudeep Dutta, F. C. Wellstood, and Steven M. Anlage, “Surface Resistance Imaging with a Scanning Near-Field Microwave Microscope,” Appl. Phys. Lett. 71, 1736–1738 (1997). cond-mat/9712142.CrossRefGoogle Scholar
  47. 47.
    D. E. Steinhauer, C. P. Vlahacos, S. K. Dutta, B. J. Feenstra, F. C. Wellstood, and Steven M. Anlage, “Quantitative Imaging of Sheet Resistance with a Scanning Near-Field Microwave Microscope,” Appl. Phys. Lett. 72, 861–863 (1998). cond-mat/9712171.CrossRefGoogle Scholar
  48. 48.
    D. E. Steinhauer, C. P. Vlahacos, C. Canedy, A. Stanishevski, J. Melngailis, R. Ramesh, F. C. Wellstood, and S. M. Anlage, “Imaging of Microwave Permittivity, Tunability, and Damage Recovery in (Ba,Sr)TiO3 Thin Films,” Appl. Phys. Lett. 75, 3180–3182 (1999).CrossRefGoogle Scholar
  49. 49.
    B. J. Feenstra, C. P. Vlahacos, Ashfaq S. Thanawalla, D. E. Steinhauer, S. K. Dutta, F. C. Wellstood and Steven M. Anlage, “Near-Field Scanning Microwave Microscopy: Measuring Local Microwave Properties and Electric Field Distributions,” IEEE MTT-S Int. Microwave Symp. Digest, p. 965–966 (1998). cond-mat/9802293.Google Scholar
  50. 50.
    Steven M. Anlage, C. P. Vlahacos, D. E. Steinhauer, S. K. Dutta, B. J. Feenstra, A. Thanawalla, and F. C. Wellstood, “Low Power Superconducting Microwave Applications and Microwave Microscopy,” Particle Accelerators 61, [321–336]/57–72 (1998). cond-mat/9808195Google Scholar
  51. 51.
    Steven M. Anlage, D. E. Steinhauer, C. P. Vlahacos, B. J. Feenstra, A. S. Thanawalla, Wensheng Hu, Sudeep K. Dutta, and F. C. Wellstood, “Superconducting Material Diagnostics using a Scanning Near-Field Microwave Microscope,” IEEE Trans. Appl. Supercond. 9, 4127–4132 (1999). cond-mat/9811158.CrossRefGoogle Scholar
  52. 52.
    Steven M. Anlage, Wensheng Hu, C. P. Vlahacos, David Steinhauer, B. J. Feenstra, Sudeep K. Dutta, Ashfaq Thanawalla, and F. C. Wellstood, “Microwave Nonlinearities in High-Tc Superconductors: The Truth Is Out There,” J. Supercond. 12, 353–362 (1999). cond-mat/9808194.CrossRefGoogle Scholar
  53. 53.
    C. P. Vlahacos, D. E. Steinhauer, S. K. Dutta, B. J. Feenstra, Steven M. Anlage, and F. C. Wellstood, “Non-Contact Imaging of Dielectric Constant with a Near-Field Scanning Microwave Microscope,” The Americas Microscopy and Analysis, January, 5–7, (2000).Google Scholar
  54. 54.
    Steven M. Anlage, A. S. Thanawalla, A. P. Zhuravel’, W. Hu, C. P. Vlahacos, D. E. Steinhauer, S. K. Dutta, and F. C. Wellstood, “Near-Field Scanning Microwave Microscopy of Superconducting Materials and Devices,” in Advances in Superconductivity XI, ed. by N. Koshizuka and S. Tajima, (Springer-Verlag, Tokyo, 1999), pp. 1079–1084.Google Scholar
  55. 55.
    C. P. Vlahacos, D. E. Steinhauer, S. K. Dutta, B. J. Feenstra, Steven M. Anlage, and F. C. Wellstood, “Quantitative Topographic Imaging Using a Near-Field Scanning Microwave Microscope,” Appl. Phys. Lett., 72, 1778–1780 (1998). cond-mat/9802139.CrossRefGoogle Scholar
  56. 56.
    M. J. Werner and R. J. King, “Mapping the ε″ of conducting solid films in situ” MRS Proc. (1996); U.S. Patent #5,334,941, “Microwave reflection resonator sensors,” issued August 2, 1994 to R. J. King.Google Scholar
  57. 57.
    Y. Manassen, “Scanning Probe Microscopy and Magnetic Resonance,” Adv. Mater. 6, 401–404 (1994).CrossRefGoogle Scholar
  58. 58.
    Z. Zhang, P. C. Hammel and P. Wigen, “Observation of ferromagnetic resonance in a microscopic sample using magnetic resonance force microscopy,” Appl. Phys. Lett. 68, 2005–2007 (1996); Z. Zhang, P. C. Hammel, M. Midzor, M. L. Roukes, and J. R. Childress, “Ferromagnetic resonance force microscopy on microscopic cobalt single layer films,” Appl. Phys. Lett. 73, 2036–2038 (1998).CrossRefGoogle Scholar
  59. 59.
    K. Wago, D. Botkin, C. S. Yannoni, and D. Rugar, “Paramagnetic and ferromagnetic resonance imaging with a tip-on-cantilever magnetic resonance force microscope,” Appl. Phys. Lett. 72, 2757–2759 (1998).CrossRefGoogle Scholar
  60. 60.
    B. Knoll, and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399, 134–137 (1999).CrossRefGoogle Scholar
  61. 61.
    R. C. Black, F. C. Wellstood, E. Dantsker, A. H. Miklich, D. T. Nemeth, D. Koelle, F. Ludwig, and J. Clarke, “Microwave microscopy using a superconducting quantum interference device,” Appl. Phys. Lett. 66, 99–101 (1995); R. C. Black, F. C. Wellstood, E. Dantsker, A. H. Miklich, D. Koelle, F. Ludwig, and J. Clarke, “High-frequency magnetic microscopy using a high-Tc SQUID,” IEEE Trans. Appl. Supercon. 5, 2137–2141 (1995).CrossRefGoogle Scholar
  62. 62.
    J. E. Aitken, “Swept Frequency Microwave Q-Factor Measurement,” Proc. IEE 123, 855–862 (1976).Google Scholar
  63. 63.
    K. Zaki and G. J. Chen, private communication.Google Scholar
  64. 64.
    D. E. Steinhauer, C. P. Vlahacos, C. Canedy, A. Stanishevski, J. Melngailis, R. Ramesh, F. C. Wellstood, and S. M. Anlage, “Quantitative Imaging of Permittivity and Tunability with a Near-Field Scanning Microwave Microscope,” submitted to Rev. Sci. Instrum. (1999).Google Scholar
  65. 65.
    S. Ramo, J. R. Whinnery and T. van Duzer, Fields and Waves in Communication Electronics, second edition, (Wiley, New York, 1984), p. 445.Google Scholar
  66. 66.
    Ichiro Takeuchi, personal communication.Google Scholar
  67. 67.
    J. C. Booth, Ph.D. Thesis, “Novel Measurements of the Frequency Dependent Microwave Surface Impedance of Cuprate Thin Film Superconductors,” University of Maryland, 1996.Google Scholar
  68. 68.
    G. L. James, “Analysis and Design of TE11-to-HE11 Corrugated Cylindrical Waveguide Mode Converters,” IEEE Trans. Microwave Theory Tech. 29, 1059–1066 (1981).CrossRefGoogle Scholar
  69. 69.
    D. Gershon, J. P. Calame, Y. Carmel, T. M. Antonsen Jr., and R. M. Hutchen, “Open-ended coaxial probe for high-temperature and broad-band dielectric measurements,” IEEE Trans. Microwave Theory Tech. 47, 1640–1648 (1999).CrossRefGoogle Scholar
  70. 70.
    B. J. Feenstra, Ashfaq S. Thanawalla, Wensheng Hu, D. E. Steinhauer, Steven M. Anlage, F. C. Wellstood, “Local measurements of normal and superconducting state properties of high Tc superconductors at microwave frequencies,” Bull. Am. Phys. Soc. 44, 1479 (1999).Google Scholar
  71. 71.
    A. F. Lann, M. Abu-Teir, M. Golosovsky, D. Davidov, A. Goldgirsch, and V. Berlin, “Magnetic-field-modulated microwave reflectivity of high-Tc superconductors studied by near-field mm-wave microscopy,” Appl. Phys. Lett. 75, 1766–1768 (1999).CrossRefGoogle Scholar
  72. 72.
    A. F. Lann, M. Abu-Teir, M. Golosovsky, D. Davidov, S. Djordjevic, N. Bontemps, and L. F. Cohen, “A cryogenic microwave scanning near-field probe: Application to study of high-Tc superconductors,” Rev. Sci. Instrum. 70, 4348–4355 (1999).CrossRefGoogle Scholar
  73. 73.
    Wensheng Hu, B. J. Feenstra, A. S. Thanawalla, F. C. Wellstood, and Steven M. Anlage, “Imaging of Microwave Intermodulation Fields in a Superconducting Microstrip Resonator,” Appl. Phys. Lett. 75, 2824–2826 (1999).CrossRefGoogle Scholar
  74. 74.
    Ashfaq S. Thanawalla, S. K. Dutta, C. P. Vlahacos, D. E. Steinhauer, B. J. Feenstra, Steven M. Anlage, and F. C. Wellstood, “Microwave Near-Field Imaging of Electric Fields in a Superconducting Microstrip Resonator,” Appl. Phys. Lett. 73, 2491–2493 (1998). cond-mat/9805239.CrossRefGoogle Scholar
  75. 75.
    S. K. Dutta, C. P. Vlahacos, D. E. Steinhauer, Ashfaq S. Thanawalla, B. J. Feenstra, F. C. Wellstood, Steven M. Anlage, and Harvey S. Newman, “Imaging Microwave Electric Fields Using a Near-Field Scanning Microwave Microscope,” Appl. Phys. Lett. 74, 156–158 (1999). cond-mat/9811140.CrossRefGoogle Scholar
  76. 76.
    Ashfaq S. Thanawalla, W. Hu, D. E. Steinhauer, S. K. Dutta, B. J. Feenstra, Steven M. Anlage, F. C. Wellstood, and Robert B. Hammond, “Frequency Following Imaging of the Electric Field around Resonant Superconducting Devices using a Near-Field Scanning Microwave Microscope,” IEEE Trans. Appl. Supercond. 9, 3042–3045 (1999). cond-mat/9811141.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Steven M. Anlage
    • 1
  • D. E. Steinhauer
    • 1
  • B. J. Feenstra
    • 1
  • C. P. Vlahacos
    • 1
  • F. C. Wellstood
    • 1
  1. 1.Center for Superconductivity Research, and Materials Research and Engineering CenterDepartment of Physics, University of MarylandCollege ParkUSA

Personalised recommendations