Skip to main content

Recombinase-directed plant transformation for the post-genomic era

  • Chapter
Functional Genomics

Abstract

Plant genomics promises to accelerate genetic discoveries for plant improvements. Machine-driven technologies are ushering in gene structural and expressional data at an unprecedented rate. Potential bottlenecks in this crop improvement process are steps involving plant transformation. With few exceptions, genetic transformation is an obligatory final step by which useful traits are engineered into plants. In addition, transgenesis is most often needed to confirm gene function, after deductions made through comparative genomics, expression profiles, and mutation analysis. This article reviews the use of recombinase systems to deliver DNA more efficiently into the plant genome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albert, H., Dale, E.C., Lee, E. and Ow, D.W. 1995. Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J. 7: 649–659.

    Article  PubMed  CAS  Google Scholar 

  • Alonso, J.C., Weise, F. and Rojo, F. 1995. The Bacillus subtitis histone-like protein Hbsu is required for DNA resolution and DNA insertion mediated by the β recombinase of plasmid pSM 19035. J. Biol. Chem. 270: 2938–2945.

    Article  PubMed  CAS  Google Scholar 

  • Araki, K., Araki, M. and Yamamura, K. 1997. Targeted integration of DNA using mutant lox sites in embryonic stem cells. Nucl. Acids Res. 25: 8968–8972.

    Article  Google Scholar 

  • Battacharyya, M.K., Stermer, B.A. and Dixon, R.A. 1994. Reduced variation in transgene expression from a binary vector with selectable markers at the right and left T-DNA borders. Plant J. 6: 957–968.

    Article  Google Scholar 

  • Baubonis, W. and Sauer, B. 1993. Genomic targeting with purified Cre recombinase. Nucl. Acids Res. 21: 2025–2029.

    Article  PubMed  CAS  Google Scholar 

  • Bayley, C.C., Morgan, M., Dale, E.C. and Ow, D.W. 1992. Exchange of gene activity in transgenic plants catalyzed by the Cre-lox site-specific recombination system. Plant Mol. Biol. 18: 353–361.

    Article  PubMed  CAS  Google Scholar 

  • Bethke, B. and Sauer, B. 1997. Segmental genomic replacement by Cre-mediated recombination: genotoxic stress activation of the p53 promoter in single-copy transformants. Nucl. Acids Res. 25: 2828–2834.

    Article  PubMed  CAS  Google Scholar 

  • Baszczynski, C.L., Bowen, B.A., Drummond, B., Gordon-Kamm, W.J., Peterson, D.J., Sandahl, G.A., Tagliani, L.A., Zhao, Z.-Y. 2001a. Novel nucleic acid sequence encoding FLP recombinase. US patent 6,175,058 B1.

    Google Scholar 

  • Baszczynski, C.L., Bowen, B.A., Peterson, D.J., Tagliani, L.A. 2001b. Composition and methods for genetic modification of plants. US patent 6,187,994

    Google Scholar 

  • Bl. Choi, S., Begum, D., Koshinsky, H., Ow, D.W. and Wing, R.A. 2000. A new approach for the identification and cloning of genes: the pBAC wich system using Cre/lox site-specific recombination. Nucl. Acids Res. 28: el9, i–vii.

    Google Scholar 

  • Corneille, S., Lutz, K., Svab, Z. and Maliga, P. 2001. Efficient elimination of selectable marker genes from the plastid genome by the Cre-lox site-specific recombination system. Plant J. 27: 171–178.

    Article  PubMed  CAS  Google Scholar 

  • Dale, E.C. and Ow, D.W. 1990. Intra-and intermolecular site-specific recombination in plant cells mediated by bacteriophage P1 recombinase. Gene 91: 79–85.

    Article  PubMed  CAS  Google Scholar 

  • Dale, E.C. and Ow, D.W. 1991. Gene transfer with the subsequent removal of the selection gene from the host genome. Proc. Natl. Acad. Sci. USA 88: 10558–10562.

    Article  PubMed  CAS  Google Scholar 

  • Day, C.D., Lee, E., Kobayashi, J., Holappa, L.D., Albert, H. and Ow, D.W. 2000. Transgene integration into the same chromosomal location can produce alleles that express at a predictable level, or alleles that are differentially silenced. Genes Dev. 14: 2869–2880.

    Article  PubMed  CAS  Google Scholar 

  • De Buck, S., Van Montagu, M. and Depicker, A. 2001. Transgene silencing of invertedly repeated transgenes is released upon deletion of one of the transgenes involved. Plant Mol. Biol. 46: 433–445.

    Article  PubMed  Google Scholar 

  • Dellaire, G., Lemieux, N., Belmaaza, A. and Chartrand, P. 1997. Ectopic gene targeting exhibits a bimodal distribution of integration in murine cells, indicating that both intra-and interchromosomal sites are accessible to the targeting vector. Mol. Cell. Biol. 17: 5571–5580.

    PubMed  CAS  Google Scholar 

  • Diaz, V., Rojo, F., Martinez, A.C., Alonso, J.C. and Bernad, A. 1999. The prokaryotic β-recombinase catalyzes site-specific recombination in mammalian cells. J. Biol. Chem. 274: 6634–6640.

    Article  PubMed  CAS  Google Scholar 

  • Feng, Y-Q, Seibler, J., Alami, R., Eisen, A., Westerman, K.A., Leboulch, P., Fiering, S. and Bouhassira, E.E. 1999. Site-specific chromosomal integration in mammalian cells: highly efficient Cre recombinase-mediated cassette exchange. J. Mol. Biol. 292: 779–785.

    Article  PubMed  CAS  Google Scholar 

  • Gleave, A.P., Mitra, D.S., Mudge, S.R. and Morris, B.A.M. 1999. Selectable marker-free transgenic plants without sexual crossing: transient expession of cre recombinase and use of a conditional lethal dominant gene. Plant Mol. Biol. 40: 223–235.

    Article  PubMed  CAS  Google Scholar 

  • Groth, A.C., Olivares, E.C., Thyagarajan, B. and Calos, M.P. 2000 A phage integrase directs efficient site-specific integration in human cells. Proc. Natl. Acad. Sci. USA 97: 5995–6000.

    Article  PubMed  CAS  Google Scholar 

  • Hajdukiewicz, P.T., Gilbertson, L.A. and Staub, J.M. 2001. Multiple pathways for Cre/lox-mediated recombination in plastids. Plant J. 27: 161–170.

    Article  PubMed  CAS  Google Scholar 

  • Hoess, R.H., Wierzbicki, A. and Abremski, K. 1986. The role of the loxP spacer region in P1 site-specific recombination. Nucl. Acids Res. 14: 2287–2300.

    Article  PubMed  CAS  Google Scholar 

  • Hoff, T., Schnorr, K.M. and Mundy, J. 2001. A recombinase-mediated transcriptional induction system in transgenic plants. Plant Mol. Biol. 45: 41–49.

    Article  PubMed  CAS  Google Scholar 

  • Hohn, B., Levy, A.A., Puchta, H. 2001. Elimination of selection markers from transgenic plants. Curr. Opin. Biotechnol. 12: 139–143.

    Article  PubMed  CAS  Google Scholar 

  • Howe, M. Dimitri, P. Berloco M. and Wakimoto, B.T. 1995. Cis-effects of heterochromatin on heterochromatic and euchromatic gene activity in Drosophila melanogaster. Genetics 140: 1033–1045.

    PubMed  CAS  Google Scholar 

  • Huang, L.C., Wood E.A. and Cox, M.M. 1991. A bacterial model system for chromosomal targeting. Nucl. Acids Res. 19: 443–448.

    Article  PubMed  CAS  Google Scholar 

  • Iyer, L.M., Kumpatla, S.P., Chandrasekharan, M.B. and Hall, T.C. 2000. Transgene silencing in monocots. Plant Mol. Biol. 43: 323–346.

    Article  PubMed  CAS  Google Scholar 

  • Kaeppler, S.M., Kaeppler, H.F. and Rhee, Y. 2000. Epigenetic aspects of somaclonal variation in plants. Plant Mol. Biol. 43: 179–188.

    Article  PubMed  CAS  Google Scholar 

  • Kilby, N.J., Davies, G.J., Snaith, M.R. and Murray, J.A.H. 1995. FLP recombinase in transgenic plants: constitutive activity in stably transformed tobacco and generation of marked cell clones in Arabidopsis. Plant J. 8: 637–652.

    Article  PubMed  CAS  Google Scholar 

  • Kilby, N.J., Fyvie, M.J., Sessions, R.A., Davies, G.J. and Murray, J.A.H. 2000. Controlled induction of GUS marked clonal sectors in Arabidopsis. J. Exp. Bot. 51: 853–863.

    Article  PubMed  CAS  Google Scholar 

  • Kohli, A., Leech, M., Vain, P., Laurie, D.A. and Christou, P. 1998. Transgene organization in rice engineered through direct DNA transfer supports a two-phase integration mechanism mediated by the establishment of integration hot spots. Proc. Natl. Acad. Sci. USA 95: 7203–7208.

    Article  PubMed  CAS  Google Scholar 

  • Koshinsky, H.A., Lee, E. and Ow, D.W. Cre-lox site-specific recombination between Arabidopsis and tobacco chromosomes. Plant J. 23: 715–722.

    Google Scholar 

  • Lloyd, A.M. and Davis, R.W. 1994. Functional expression of the yeast FLP/FRT site-specific recombination system in Nicotiana tabacum. Mol. Gen. Genet. 242: 653–657.

    Article  PubMed  CAS  Google Scholar 

  • Lorbach, E., Christ, N., Schwikardi, M. and Droge, P. 2000. Site-specific recombination in human cells catalyzed by phage λ integrase mutants. J. Mol. Biol. 296: 1175–1181.

    Article  PubMed  CAS  Google Scholar 

  • Lyznik, L.A., Mitchell, J.C., Hirayama, L. and Hodges, T.K. 1993. Activity of yeast FLP recombinase in maize and rice protoplasts. Nucl. Acids Res. 21: 969–975.

    Article  PubMed  CAS  Google Scholar 

  • Lyznik, L. A., Hirayama, L., Rao, K.V., Abad, A. and Hodges, T.K. 1995. Heat-inducible expression of FLP gene in maize cells. Plant J. 8: 177–186.

    Article  PubMed  CAS  Google Scholar 

  • Lyznik, L.A., Rao, K.V. and Hodges, T.K. 1996. FLP-mediated recombination of FRT sites in the maize genome. Nucl. Acids Res. 24: 3784–3789.

    Article  PubMed  CAS  Google Scholar 

  • Maeser, S. and Kahmann, R. 1991. The Gin recombinase of phage Mu can catalyze site-specific recombination in plant protoplasts. Mol. Gen. Genet. 230: 170–176.

    Article  PubMed  CAS  Google Scholar 

  • Matzke, M.A., Mette, M.F. and Matzke, A.J.M. 2000. Transgene silencing by the host genome defense: implications for the evolution of epigenetic control mechanisms in plants and vertebrates. Plant Mol. Biol. 43: 401–415.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, P. 2000. Transcriptional transgene silencing and chromatin component. Plant Mol. Biol. 43: 221–234.

    Article  PubMed  CAS  Google Scholar 

  • Muskens, M.W.M., Vissers, A.P.A., Mol, J.N.M. and Kooter, J.M. 2000. Role of inverted DNA repeats in transcriptional and post-transcriptional gene silencing. Plant Mol. Biol. 43: 243–260.

    Article  PubMed  CAS  Google Scholar 

  • Naested, H., Fennema, M., Hao, L., Andersen, M., Janssen, D.B. and Mundy, J. 1999. A bacterial haloalkane dehalogenase gene as a negative selectable marker in Arabidopsis. Plant J. 18: 571–576.

    Article  PubMed  CAS  Google Scholar 

  • Odell, J., Caimi, P., Sauer, B. and Russell, S. 1990. Site-directed recombination in the genome of transgenic tobacco. Mol. Gen. Genet. 223: 369–378.

    Article  PubMed  CAS  Google Scholar 

  • Odell, J.T., Hoopes, J.L. and Vermerris, W. 1994. Seed-specific gene activation mediated by Cre-lox site-specific recombination system. Plant Physiol. 106: 447–458.

    Article  PubMed  CAS  Google Scholar 

  • Offringa, R., Franke-van Dijk, M.E.I., de Groot, M.J.A., van den Elzen, P.J.M. and Hooykaas, P.J.J. 1993. Nonreciprocal homologous recombination between Agrobacterium-transferred DNA and a plant chromosomal locus. Proc. Natl. Acad. Sci. USA 90: 7346–7350.

    Article  PubMed  CAS  Google Scholar 

  • O’Gorman, S., Fox, D.T. and Wahl, G.M. 1991. Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science 251: 1351–1355.

    Article  PubMed  Google Scholar 

  • Onouchi, H., Yokoi, K., Machida, C., Matzuzaki, H., Oshima, Y., Matsuoka, K., Nakamura, K. and Machida, Y 1991. Operation of an efficient site-specific recombination system of Zygosaccharomyces rouxii in tobacco cells. Nucl. Acids Res. 19: 6373–6378.

    Article  PubMed  CAS  Google Scholar 

  • Onouchi, H., Nishihama, R., Kudo, M., Machida, Y. and Machida, C. 1995. Visualization of site-specific recombination catalyzed by a recombinase from Zygosaccharomyces rouxii in Arabidopsis thaliana. Mol. Gen. Genet. 247: 653–660.

    Article  PubMed  CAS  Google Scholar 

  • Ow, D.W. and Medberry, S.L. 1995. Genome manipulation through site-specific recombination. Crit. Rev. Plant Sci. 14: 239–261.

    CAS  Google Scholar 

  • Ow, D.W. 1996. Recombinase-directed chromosome engineering in plants. Curr. Opin. Biotechnol. 7: 181–186.

    Article  CAS  Google Scholar 

  • Ow, D. 2000. Marker Genes. Joint FAO/WHO Expert Consultation on Foods Derived from Biotechnology (May 29–June 2, 2000, Geneva, Switzerland; http://www.who.int/fsf/GMfood/Consultation_May2000/Biotech_00_14.pdf

  • Ow, D.W. 2001. The right chemistry for marker gene removal? Nature Biotechnol. 19: 115–116.

    Article  CAS  Google Scholar 

  • Ow, D.W., Calendar, R. and Thomason, L. 2001. DNA recombination in eukaryotic cells by the bacteriophage phiC31 recombination system. International patent filing, WO 01/07572.

    Google Scholar 

  • Pawlowski, W.P. and Somers, D.A. 1998. Transgenic DNA integrated into the oat genome is frequently interspersed by host DNA. Proc. Natl. Acad. Sci. USA 95: 12106–12110.

    Article  PubMed  CAS  Google Scholar 

  • Peschke, V.M. and Phillips, R.L. 1992. Genetic implications of somaclonal variation in plants. Adv. Genet. 30: 41–75.

    Article  CAS  Google Scholar 

  • Puchta, H. 2001. Gene replacement by homologous replacement in plants. Plant Mol. Biol., this issue.

    Google Scholar 

  • Qin, M., Bayley, C., Stockton, T. and Ow, D.W. 1994. Cre recombinase mediated site-specific recombination between plant chromosomes. Proc. Natl. Acad. Sci. USA 91: 1706–1710.

    Article  PubMed  CAS  Google Scholar 

  • Que, Q.; Wang, H.-Y. and Jorgensen, R. 1998. Distinct patterns of pigment suppression are produced by allelic sense and antisense chalcone synthase transgenes in petunia flowers. Plant J. 13: 401–409.

    Article  CAS  Google Scholar 

  • Risseeuw, E., Offringa, R., Franke-van Dijk, M.E.I. and Hooykaas, P.J.J. 1995. Targeted recombination in plants using Agrobacterium coincides with additional rearrangements at the target locus. Plant J. 7: 109–119.

    Article  PubMed  CAS  Google Scholar 

  • Russell, S.H., Hoopes, J.L. and Odell, J.T. 1992. Directed excision of a transgene from the plant genome. Mol. Gen. Genet. 234: 49–59.

    PubMed  CAS  Google Scholar 

  • Sadowski, P.D. 1993. Site-specific genetic recombination: hops, flips, and flops. FASEB J. 7: 760–767.

    PubMed  CAS  Google Scholar 

  • Sauer, B. and Henderson, N. 1990. Targeted insertion of exogenous DNA into the eukaryotic genome by the Cre recombinase. New Biol. 2: 441–449.

    PubMed  CAS  Google Scholar 

  • Schmidt, E.E., Taylor, D.S., Prigge, J.R., Barnett, S. and Capecchi, M.R. 2000. Illegitimate Cre-dependent chromosome rearrangements in transgenic mouse spermatids. Proc. Natl. Acad. Sci. USA 97: 13702–13707.

    Article  PubMed  CAS  Google Scholar 

  • Schwikardi, M. and Droge P. 2000. Site-specific recombination in mammalian cells catalyzed by γδ resolvase mutants: implications for the topology of episomal DNA. FEBS Lett. 471: 147–150.

    Article  PubMed  CAS  Google Scholar 

  • Seibler, J. and Bode, J. 1997. Double-reciprocal crossover mediated by FLP-recombinase: a concept and an assay. Biochemistry 36: 1740–1747.

    Article  PubMed  CAS  Google Scholar 

  • Sieburth, L.E., Drews, G.N. and Meyerowitz, E.M. 1998. Nonautonomy of AGAMOUS function in flower development: use of a Cre/lox method for mosaic analysis in Arabidopsis. Development 125: 4303–4312.

    PubMed  CAS  Google Scholar 

  • Sonti, R.V., Tissier, A.F., Wong, D., Viret, J.-F. and Signer, E.R. 1995. Activity of the yeast FLP recombinase in Arabidopsis. Plant Mol. Biol. 28: 1127–1132.

    Article  PubMed  CAS  Google Scholar 

  • Srivastava, V., Anderson, O.A. and Ow, D.W. 1999. Single-copy transgenic wheat generated through the resolution of complex integration patterns. Proc. Natl. Acad. Sci. USA 96: 11117–11121.

    Article  PubMed  CAS  Google Scholar 

  • Srivastava, V. and Ow D.W. 2001a. Single copy primary trans-formants of maize obtained through the co-introduction of a recombinase-expressing construct. Plant Mol. Biol. 46: 561–566.

    Article  PubMed  CAS  Google Scholar 

  • Srivastava, V. and Ow D.W. 2001b. Biolistic mediated site-specific integration in rice. Mol. Breed., in press.

    Google Scholar 

  • Stavenhagen, J.B. and Zakian, V.A. 1994. Internal tracts of telomeric DNA act as silencers in Saccharomyces cerevisiae. Genes Dev. 8: 1411–1422.

    Article  PubMed  CAS  Google Scholar 

  • Sugita, K., Kasahara, T., Matsunaga, E. and Ebinuma, H. 2000. A transformation vector for the production of marker-free transgenic plants containing single copy transgene at high frequency. Plant J. 22: 461–469.

    Article  PubMed  CAS  Google Scholar 

  • Thomason, L.C., Calendar, R. and Ow, D.W. 2001. Gene insertion and replacement in Schizosacchromyces pombe mediated by the Streptomyces bacteriophage φC31 site-specific recombination system. Mol. Genet. Genomics 265: 1031–1038.

    Article  PubMed  CAS  Google Scholar 

  • Thorpe, H.M. and Smith M.C. 1998. In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family. Proc. Natl. Acad. Sci. USA 95: 5505–5510.

    Article  PubMed  CAS  Google Scholar 

  • Thyagarajan, B., Olivares, E.C., Hollis, R.P., Ginsburg, D.S. and Calos, M.P. 2001. Site-specific genomic integration in mammalian cells mediated by phage φC31 integrase. Mol. Cell. Biol. 21: 3926–3934.

    Article  PubMed  CAS  Google Scholar 

  • Vergunst, A.C. and Hooykaas, P.J.J. 1998. Cre/lox-mediated site-specific integration of Agrobacterium T-DNA in Arabidopsis thaliana by transient expression of cre. Plant Mol. Biol. 38: 393–406.

    Article  PubMed  CAS  Google Scholar 

  • Vergunst, A.C. and Hooykaas, P.J.J. 1999. Recombination in the plant genome and its application in biotechnology. Crit. Rev. Plant Sci. 18: 1–31.

    CAS  Google Scholar 

  • Vergunst, A.C., Jansen, L.E.T. and Hooykaas, P.J.J. 1998. Site-specific integration of Agrobacterium T-DNA in Arabidopsis thaliana mediated by Cre recombinase. Nucl. Acids Res. 26: 2729–2734.

    Article  PubMed  CAS  Google Scholar 

  • Vergunst, A.C., Jansen, L.E.T., Fransz, P.F., de Jong, J.H. and Hooykaas, P. J. J. 2000a. Cre/lox-mediated recombination in Arabidopsis: evidence for a transmission of a translocation and a deletion event. Chromosoma 109: 287–297.

    Article  PubMed  CAS  Google Scholar 

  • Vergunst, A.C., Schrammeijer, B., den Dulk-Ras, A., de Vlaam, C.M.T., Regensburg-Tuink, R. and Hooykaas, P.J.J. 2000b. VirB/D4 dependent protein translocation from Agrobacterium into plant cells. Science 290: 979–982.

    Article  PubMed  CAS  Google Scholar 

  • Wallrath, L.L. and Elgin, S.C.R. 1995. Position effect variegation in Drosophila is associated with an altered chromatin structure. Genes Dev. 9: 1263–1277.

    Article  PubMed  CAS  Google Scholar 

  • Wassenegger, M. 2000. RNA-directed DNA methylation. Plant Mol. Biol. 43: 203–220.

    Article  PubMed  CAS  Google Scholar 

  • Zuo, J., Niu, Q.-W., Moller, S.G. and Chua, N.-H. 2001. Chemical-regulated, site-specific DNA excision in transgenic plants. Nature Biotechnol. 19: 157–161.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ow, D.W. (2002). Recombinase-directed plant transformation for the post-genomic era. In: Town, C. (eds) Functional Genomics. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0448-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0448-0_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3903-1

  • Online ISBN: 978-94-010-0448-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics