Skip to main content

Through a genome, darkly: comparative analysis of plant chromosomal DNA

  • Chapter
Functional Genomics
  • 951 Accesses

Abstract

Plant nuclear genomes encompass a wide range of variation in size and nucleotide composition with diverse arrangements of chromosomal segments, repetitive sequences and distribution of genes. Comparative genomic analysis may be undertaken at different levels of organisation, which are reflected in this review, together with a focus on the genetic and functional significance of the observed variation. Patterns of genome organisation have been revealed which reflect the different underlying mechanisms and constraints driving change. Thus comparative issues of genome size, nucleotide sequence composition and genome heterogeneity are provided as a background to understanding the different levels of segmental and repetitive sequence duplication and distribution of genes. The extent of synteny and collinearity revealed by recent genetic and sequence comparisons is discussed, together with a consideration of problems associated with such analyses. The possible origins and mechanisms of variation in genome size and organisation are covered, including the prevalence of duplication at different levels of organisation. The likely genetic, functional and adaptive consequences of replicated loci are discussed with evidence from comparative studies. The scope for comparative analysis of epigenetic plant genome variation is considered. Finally, opportunities for applying comparative genomics to isolating genes and understanding complex crop genomes are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acarkan, A., Rossberg, M., Koch, M. and Schmidt, R. 2000. Comparative genome analysis reveals extensive conservation of genome organisation for Arabidopsis and Capsella rubella. Plant J. 23: 55–62.

    PubMed  CAS  Google Scholar 

  • Ahn, S. and Tanksley, S.D. 1993. Comparative linkage maps of rice and maize genomes. Proc. Natl. Acad. Sci. USA 90: 7980–7984.

    PubMed  CAS  Google Scholar 

  • Ainscough, J.F.X., John, R.M., Barton, S.C. and Surani, M.A. 2000. A skeletal muscle-specific mouse lgf2 repressor lies 40 kb downstream of the gene. Development 127: 3923–3930.

    PubMed  CAS  Google Scholar 

  • Angiosperm Phylogeny Group. 1998. An ordinal classification for the families of flowering plants. Ann. MO Bot. Gard. 85: 531–553.

    Google Scholar 

  • Arabidopsis Genome Initiative, 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796–815.

    Google Scholar 

  • Baldi, P. and Brunak, S. 1998. Bioinformatics: the machine learning approach. MIT Press, Cambridge, MA.

    Google Scholar 

  • Bancroft, I. 2001. Duplicate and diverge: the evolution of plant genome strucuture. Trends Genet. 17: 7–11.

    Google Scholar 

  • Barakat, A., Carels, N. and Bernardi, G. 1997. The distribution of genes in the genomes of Gramineae. Proc. Natl. Acad. Sci. USA 94:6857–6861.

    PubMed  CAS  Google Scholar 

  • Bennett, M.D. 1987. Variation in genomic form in plants and its ecological implications. New Phytol. 106(Suppl.): 177–200.

    Google Scholar 

  • Bennetzen, J.L. 2000. Comparative sequence analysis of plant nuclear genomes: microcolinearity and its many exceptions. Plant Cell 12: 1021–1029.

    PubMed  CAS  Google Scholar 

  • Bennetzen, J.L. and Kellogg, E.A. 1997. Do plants have a one-way ticket to genomic obesity? Plant Cell 9: 1509–1514.

    PubMed  CAS  Google Scholar 

  • Bennetzen, J.L., Schrick, K.M., Springer, P.S., Brown, W.E. and SanMiguel, P. 1994. Active maize genes are unmodified and flanked by diverse classes of modified, highly repetitive DNA. Genome 37: 565–576.

    PubMed  CAS  Google Scholar 

  • Ben-Porath, I. and Cedar, H. 2000. Genetic Imprinting: focusing on the centre. Curr. Opin Genet. Dev. 10: 550–554.

    PubMed  CAS  Google Scholar 

  • Bernardi, G. 2000. Isochores and the evolutionary genomics of vertebrates. Gene 241: 3–17.

    PubMed  CAS  Google Scholar 

  • Bernardi, G. and Bernardi, G. 1986. Compositional contraints and genome evolution. J. Mol. Evol. 24: 1–11.

    PubMed  CAS  Google Scholar 

  • Bernardi, G., Olofsson, B., Filipski, J., Zerial, M., Salinas, J., Cuny, G., Meunier-Rotival, M. and Rodier, F. 1985. The mosaic genome of warm-blooded vertebrates. Science 228: 953–958.

    PubMed  CAS  Google Scholar 

  • Bingham, E.T., Groose, R.W., Woodfield, D.R. and Kidwell, K.K. 1994. Complementary gene interactions in alfalfa are greater in autotetraploids than diploids. Crop Sci. 34: 823–829.

    Google Scholar 

  • Blanc, G., Barakat A., Guyot R., Cooke, R. and Delsney, M. 2000. Extensive duplication and reshuffling in the Arabidopsis genome. Plant Cell 12: 1093–1102.

    PubMed  CAS  Google Scholar 

  • Bonierbale, M.D., Plaisted, R.L. and Tanksley, S.D. 1988. RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics 120: 1095–1103.

    PubMed  CAS  Google Scholar 

  • Britten, R.J. and Davidson, E.H. 1969. Gene regulation for higher cells: a theory. Science 165: 349–357.

    PubMed  CAS  Google Scholar 

  • Callan, H.G. 1972. Replication of DNA in the chromosomes of eukaryotes. Proc. R. Soc. Lond. B 181: 19–41.

    PubMed  CAS  Google Scholar 

  • Carels, N., Hatey, P., Jabbari, K. and Bernardi, G. 1998. Compositional properties of homologous coding sequences from plants. J. Mol. Evol. 46: 45–53.

    PubMed  CAS  Google Scholar 

  • Cavalier-Smith, T. 1985. Cell volume and the evolution of eukaryotic genome size. In: T. Cavalier-Smith (Ed.) The Evolution of Genome Size, John Wiley, London, pp. 105–184.

    Google Scholar 

  • Chen, Z. J. and Pikaard, CS. 1997. Transcriptional analysis of nucleolar dominance in polyploid plants: biased expression/silencing of progenitor rRNA genes is developmentally regulated in Brassica. Proc. Natl. Acad. Sci. USA. 94: 3442–3447.

    PubMed  CAS  Google Scholar 

  • Cooke, J., Nowak, M.A., Boerlijst, M. and Maynard-Smith, J. 1997. Evolutionary origins and maintenance of redundant gene expression during metazoan development. Trends Genet. 13: 360–364.

    PubMed  CAS  Google Scholar 

  • Cronn, R.C. and Wendel, J.F. 1999. Simple methods for isolating homoeologous loci from allopolyploid genomes. Genome 41: 756–762.

    Google Scholar 

  • De Amicis, F. and Marchetti, S. 2000. Intercodon dinucleotides affect codon choice in plant genes. Nucl. Acids Res. 28: 3339–3345.

    PubMed  Google Scholar 

  • Devos, K.M. and Gale, M.D. 2000. Genome relationships: the grass model in current research. Plant Cell 12: 637–646.

    PubMed  CAS  Google Scholar 

  • Devos, K.M., Millan, T. and Gale, M.D. 1993. Comparative RFLP maps of homeologous group 2 chromosomes of wheat, rye and barley. Theor. Appl. Genet. 85: 784–792.

    CAS  Google Scholar 

  • Devos, KM, Beales, J., Nagamura Y. and Sasaki, T. 1999. Arabidopsis-rice: will colinearity allow gene prediction across the eudicot-monocot divide? Genome Res 9: 825–829.

    PubMed  CAS  Google Scholar 

  • Dong, F., Miller, J.T., Jackson, S.A., Wang, G-L., Ronald, P.C. and Jiang, J. 1998. Rice Oryza sativa centromeric regions consist of complex DNA. Proc. Natl. Acad. Sci. USA 95: 8135–8140.

    PubMed  CAS  Google Scholar 

  • Doolittle, W.F. and Sapienza, C. 1980. Selfish genes, the phenotype paradigm and genome evolution. Nature 284: 601–603.

    PubMed  CAS  Google Scholar 

  • Ellsworth, D.L., Hewett-Emmett, D. and Li, W.-H. 1994. Evolution of base composition in the insulin and insulin-like growth factor genes. Mol. Biol. Evol. 11: 875–885.

    PubMed  CAS  Google Scholar 

  • Fennoy, S.L. and Bailey-Serres, J. 1993. Synonymous codon usage in Zea mays L. nuclear genes is varied by levels of c-ending and g-ending codons. Nucl. Acids. Res. 21: 5294–5300.

    PubMed  CAS  Google Scholar 

  • Feuillet, C. and Keller, B. 1999. High gene density is conserved at syntenic loci of small and large grass genomes. Proc. Natl. Acad. Sci. USA 96: 8265–8270.

    PubMed  CAS  Google Scholar 

  • Filipski, J. 1988. Why the rate of silent codon substitutions is variable within a vertebrate genome. J. Theor. Biol. 134: 159–164.

    PubMed  CAS  Google Scholar 

  • Finnegan, E.J., Genger, R.K., Peacock, W.J. and Dennis, E.S. 1998. DNA methylation in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 223–247.

    PubMed  CAS  Google Scholar 

  • Force, A., Lynch, M., Pickett, F. B., Amores, A., Yan, Y.L. and Postlethwait, J. 1999. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151: 1531–1545.

    PubMed  CAS  Google Scholar 

  • Fransz, P.F., Armstrong, S., de Jong, J.H., Parnell, L.D., van Drunen, G., Dean, C., Zabel, P., Bisseling, T. and Jones, G.H. 2000. Integrated cytogenetic map of chromosome arm 4S of A. thaliana: structural organisation of heterochromatic knob and centromere region. Cell 100: 367–376.

    PubMed  CAS  Google Scholar 

  • Friedman, R. and Hughes, A.L. 2001. Gene duplication and the structure of eukaryotic genomes. Genome Res 11: 373–381.

    PubMed  CAS  Google Scholar 

  • Gabrielian, A and Bolshoy, A. 1999. Sequence complexity and DNA curvature. Comp. Chem. 23: 263–274.

    CAS  Google Scholar 

  • Gale, M. and Devos, K.M. 1998. Comparative genetics in the grasses. Proc. Natl. Acad. Sci. USA 95: 1971–1974.

    PubMed  CAS  Google Scholar 

  • Gale, M.D. and Devos, K.M. 1999. Plant comparative genetics after 10 years. Science 282: 656–659.

    Google Scholar 

  • Galitski, T., Saldanha, A.J., Styles, CA., Lander, E.S. and Fink, G.R. 1999. Ploidy regulation of gene expression. Science 285: 251–254.

    PubMed  CAS  Google Scholar 

  • Gaut, B.S. 2001. Patterns of chromosomal duplication in maize and their implications for comparative maps of the grasses. Genome Res. 11:55–66.

    PubMed  CAS  Google Scholar 

  • Gautier, C. 2000. Compositional bias in DNA. Curr. Opin. Genet. Dev. 10:656–661.

    PubMed  CAS  Google Scholar 

  • Genome International Sequencing Consortium. 2001. Initial sequencing and analysis of the human genome. Nature 409: 860–921.

    Google Scholar 

  • Gibson, T.J. and Spring, J. 1998. Genetic redundancy in vertebrates: polyploidy and persistence of genes encoding multidomain proteins. Theor Appl. Genet. 14: 46–49.

    CAS  Google Scholar 

  • Grant, D., Cregan, P. and Shoemaker, R.C. 2000. Genome organisation in dicots: genome duplication in Arabidopsis and synteny between soybean and Arabidopsis. Proc. Natl. Acad. Sci. USA 97:4168–4173.

    PubMed  CAS  Google Scholar 

  • Graur, D., Shu Ali, Y. and Li, W.H. 1989. Deletions in processed pseudogenes accumulate faster in rodents than in humans. J. Mol. Evol. 28: 279–285.

    PubMed  CAS  Google Scholar 

  • Gregory, T.R. 2001. Coincidence, coevolution or causation? DNA content, cell size, and the C-value enigma. Biol. Rev. 76: 65–101.

    PubMed  CAS  Google Scholar 

  • Gregory, T.R. and Hebert, P.D.N. 1999. The modulation of DNA content: proximate causes and ultimate consequences. Genome Res. 9:317–324.

    PubMed  CAS  Google Scholar 

  • Grime, J.P. and Mowforth, M.A. 1982. Variation in genome size: an ecological interpretation. Nature 299: 151–153.

    Google Scholar 

  • Guo, M. and Birchler, J.A. 1994. Trans-acting dosage effects on the expression of model gene systems in maize aneuploids. Science 266: 1999–2002.

    PubMed  CAS  Google Scholar 

  • Guo, M., Davis, D., Birchler, J.A. 1996. Dosage effects on gene expression in a maize ploidy series. Genetics 142: 1349–1355.

    PubMed  CAS  Google Scholar 

  • Guttmann, T., Vitek, A. and Pivec, L. 1977. High resolution thermal denaturation of mammalian DNAs. Nucl. Acids Res. 4: 285–291.

    PubMed  CAS  Google Scholar 

  • Haldane, J.B.S. 1933. The part played by recurrent mutation in evolution. Am. Nat. 67: 5–9.

    Google Scholar 

  • Holmquist, G.P. 1992. Chromosome bands, their chromatin flavors, and their functional features. Am. J. Human Genet. 51: 17–37.

    CAS  Google Scholar 

  • Holub, E. 2001. The arms race is ancient history in Arabidopsis, the wild flower. Nature Rev. 2: 1–12

    Google Scholar 

  • Hulbert, S.H., Richter, T.E., Axtell, J.D. and Bennetzen, J.L. 1990. Genetic mapping and characterisation of sorghum and related crops by means of maize DNA probes. Proc. Natl. Acad. Sci. USA 87: 4251–4255.

    PubMed  CAS  Google Scholar 

  • Jackson, S.A., Cheng, Z., Wang, M.L., Goodman, H.M. and Jing, J. 2000. Comparative fluorescence in situ hybridization mapping of a 431-kb Arabidopsis thaliana bacterial artificial chromosome contig reveals the role of chromosomal duplications in the expansion of the Brassica rapa genome. Genetics 156: 833–838.

    PubMed  CAS  Google Scholar 

  • Karlin, S. and Mrazek, J. 1997. Compositional differences within and between eukaryote genomes. Proc. Natl. Acad. Sci. USA 94: 10227–10232.

    PubMed  CAS  Google Scholar 

  • Kellogg, E.A. 1998. Relationships of cereal crops and other grasses. Proc. Natl. Acad. Sci. USA 95: 2005–2010.

    PubMed  CAS  Google Scholar 

  • King, G.J. 1993. Stability, structure and complexity of yeast chromosome III. Nucl. Acids Res. 2118: 4239–4245.

    Google Scholar 

  • King, G.J. and Ingrouille, M.J. 1987a. Genome heterogeneity and classification of the Poaceae. New Phytol. 107: 633–644.

    Google Scholar 

  • King, G.J. and Ingrouille, M.J. 1987b. DNA base composition heterogeneity in the grass genus Briza L. Genome 29: 621–644.

    CAS  Google Scholar 

  • King, G.J. and Lynn, J.R. 1995. Constraints on mutability in a multi-gene family. J. Mol. Evol. 41: 732–740.

    PubMed  CAS  Google Scholar 

  • Koch, M., Bishop, J. and Mitchell-Olds, T. 1999. Molecular sys-tematics and evolution of Arabidopsis and Arabis. Plant Biol. 1: 529–537.

    Google Scholar 

  • Kowalski, S.P., Lan, T.H., Feldmann, K.A. and Paterson, A.H. 1994. Comparative mapping of Arabidopsis thaliana and Brassica oleracea chromosomes reveal islands of conserved organization. Genetics 138:499–510.

    PubMed  CAS  Google Scholar 

  • Krietman, M. and Akashi, H. 1995. Molecular evidence for natural selection. Annu. Rev. Ecol. Syst. 26: 403–422.

    Google Scholar 

  • Ku, H.-M., Vision, T., Liu, J. and Tanksley, S.D. 2000. Comparing sequenced segments of tomato and Arabidopsis genomes: large scale duplication followed by selective gene loss creates a network of synteny. Proc. Natl. Acad. Sci. USA 97: 9121–9126.

    PubMed  CAS  Google Scholar 

  • Lagercrantz, U., Putterill, J., Coupland, G. and Lydiate D. 1996. Comparative mapping in Arabidopsis and Brassica, fine scale genome collinearity and congruence of genes controlling flowering time. Plant J. 9: 13–20.

    PubMed  CAS  Google Scholar 

  • Lagercrantz, U. 1998. Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics 150: 1217–1228.

    PubMed  CAS  Google Scholar 

  • Lan, T.H. and Paterson, A.H. 2000. Comparative mapping of QTL sculpting the curd of Brassica oleracea. Genetics 155: 1927–1954.

    PubMed  CAS  Google Scholar 

  • Langdon, T., Seago, C., Mende, M., Leggett, M., Thomas, H., Forster, J.W., Thomas, H., Jones, R.N. and Jenkins, G. 2000. Retrotransposon evolution in diverse plant genomes. Genetics 156:313–325.

    PubMed  CAS  Google Scholar 

  • Le, Q.H., Wright, S., Yu, Z. and Bureau, T. 2000. Transposon diversity in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 97: 7376–7381.

    PubMed  CAS  Google Scholar 

  • Leister, D., Kurth, J., Laurie, D.A., Yano, M., Sasaki, T., Devos, K., Graner, A. and Schulze-Lefert, P. 1998. Rapid reorganisation of resistance gene homologues in cereal genomes. Proc. Natl. Acad. Sci. USA 95: 370–375.

    PubMed  CAS  Google Scholar 

  • Liljegren S.J., Ditta, G.S., Eshed, H.Y, Savidge, B., Bowman, J.L. and Yanofsky, M.F. 2000. SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404: 766–770.

    PubMed  CAS  Google Scholar 

  • Lima-de-Faria, A. 1983. Molecular Evolution and Organization of the Chromosome. Elsevier Science Publishers, Amsterdam, Netherlands.

    Google Scholar 

  • Livingstone, K.D., Lackney, V.K., Blauth, J.R., van Wijk, R. and Jahn, M.K. 1999. Genome mapping in Capsicum and the evolution of genome structure in the Solanaceae. Genetics 152: 1183–1202.

    PubMed  CAS  Google Scholar 

  • Loots, G.G., Locksley, R.M., Blakespoor, CM., Wang, Z.E., Miller, W., Rubin, E.M and Frazier, K.A. 2000. Identification of a coordinate regulator of interleukins 4, 13, and 5 by cross-Species sequence comparisons. Science 288: 136–140

    PubMed  CAS  Google Scholar 

  • Lynch, M. and Force, A.G. 2000. The origin of interspecific genomic incompatibility via gene duplication. Am. Nat. 156: 590–605.

    Google Scholar 

  • Marais G., Mouchiroud D. and Duret L. 2001. Does recombination improve selection on codon usage? Lessons from nematode and fly complete genomes. Proc. Natl. Acad. Sci. USA 98: 5688–5692.

    PubMed  CAS  Google Scholar 

  • Matzke, M.A. and Matzke, A.J.M. 1998. Polyploidy and transposons. Trends Ecol. Evol. 13: 241.

    PubMed  CAS  Google Scholar 

  • McAdams, H.H. and Arkin, A. 1999. It’s a noisy business! Genetic regulation at the nanomolar scale. Trends Genet. 15: 65–69.

    PubMed  CAS  Google Scholar 

  • McCombie, W.R. et al. 2000. The complete sequence of a hete-rochromatic island from a higher eukaryote. Cell 100: 377–386.

    CAS  Google Scholar 

  • Mclnemey, J.O. 1998. Replicational and transcriptional selection on codon usage in Borrelia burgdorferi. Proc. Natl. Acad. Sci. USA 95: 10698–10703.

    Google Scholar 

  • Messing, J. and Llaca, V. 1998. Importance of anchor genomes for any plant genome project. Proc. Natl. Acad. Sci. USA 95: 2017–2020.

    PubMed  CAS  Google Scholar 

  • Michelmore, R.W. and Meyers, B.C. 1998. Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res. 8: 1113–1130.

    PubMed  CAS  Google Scholar 

  • Miramontes, P., Medrano, L., Cerpa, C., Cedergren R., Ferbeyre, G. and Cocho, G. 1995. Structural and thermodynamic properties of DNA uncover different evolutionary histories. J. Mol. Evol. 40: 698–704.

    PubMed  CAS  Google Scholar 

  • Montera, L.M., Salinas, J., Matassi, G. and Bernardi, G. 1990. Gene distribution and isochore organization in the nuclear genome of plants. Nucl. Acids Res. 18: 1859–1867.

    Google Scholar 

  • Moore, G., Roberts, M., Aragon-Aleaide, L. and Foote, T. 1997. Centromeric sites and cereal evolution. Chromosoma 105: 321–323.

    PubMed  CAS  Google Scholar 

  • Muse, S.V. 2000. Examining rates and patterns of nucleotide substitution in plants. Plant Mol. Biol. 42: 25–43.

    PubMed  CAS  Google Scholar 

  • Nadeau, J.H. and Sankoff, D. 1998. Counting of comparative maps. Trends Genet. 14: 495–501.

    PubMed  CAS  Google Scholar 

  • Narayan, R.K.J. 1998. The role of genomic constraints upon evolutionary changes in genome size and chromosome organisation. Ann. Bot. 82: 57–66.

    Google Scholar 

  • Nei, M. and Roychoudhury, A.K. 1973. Probability of fixation of nonfunctional genes at duplicate loci. Am. Nat. 107: 362–372

    Google Scholar 

  • Nekrutenko, A. and Li, W.-H. 2000. Assessment of compositional heterogeneity within and between eukaryotic genomes. Genome Res. 10: 1986–1995.

    PubMed  CAS  Google Scholar 

  • Ohno, S. 1970. Evolution by Gene Duplication. Springer-Verlag, Heidelberg, Germany.

    Google Scholar 

  • O’Neill, CM., and Bancroft, I. 2000. Comparative physical mapping of segments of the genome of Brassica oleracea var. alboglabra that are homeologous to sequenced regions of chromosomes 4 and 5 of Arabidopsis thaliana. Plant J 23: 233–243.

    PubMed  Google Scholar 

  • Orgel, L.E. and Crick, F.H.C. 1980. Selfish DNA: the ultimate parasite. Nature 284: 604–607.

    PubMed  CAS  Google Scholar 

  • Panstruga, R., Busches, R., Piffanelli. P. and Schulze-Lefert, P. 1998. A contiguous 60 kb genomic stretch from barley reveals molecular evidence for gene islands in a monocot genome. Nucl. Acids Res. 26: 1056–1062.

    PubMed  CAS  Google Scholar 

  • Parkin, I.A.P., Sharpe, A.G., Keith, D.J. and Lydiate, D.J. 1995. Identification of the A and C genomes of amphidiploid Brassica napus oilseed rape. Genome 38: 1122–1131.

    PubMed  CAS  Google Scholar 

  • Parniske, M., Hammond-Kosack, K.E., Golstein, C., Thomas, CM., Jones, D.A., Harrison, K., Wulff, B.B. and Jones, J.D. 1997. Novel disease resistance specificities result from sequence exchange between tandemly repeated genes at the Cf-4/9 locus of tomato. Cell 91: 821–832.

    PubMed  CAS  Google Scholar 

  • Paterson, A.H., Lan, T.H., Reischmann, K.P., Chang, C., Lin, Y.R., Liu, S.C., Burow, M.D., Kowalski, S.P., Katsar, CS., DelMonte, T.A., Feldmann, K.A., Schertz, K.F. and Wendel, J.F. 1996. Towards a unified genetic map of higher plants, transcending the monocot-dicot divergence. Nature Genet. 14: 380–382.

    PubMed  CAS  Google Scholar 

  • Paterson, A.H., Bowers, J.E., Burow, M.D., Draye, X., El-sik, CG., Jiang, C.-X., Katsar, CS., Lan, T.-H., Lin, Y.-R., Ming, R. and Wright, R.J. 2000. Comparative genomics of plant chromosomes. Plant Cell 12: 1523–1539.

    PubMed  CAS  Google Scholar 

  • Pedersen, A.G., Jensen, L. J., Brunak, S., Staerfeldt, H.H. and Ussery, D.W. 2000. A DNA structural atlas for Escherichia coli. J. Mol. Biol. 299: 907–930.

    PubMed  CAS  Google Scholar 

  • Peng, J., Carol, P., Richards, D.E., King, K.E., Cowling, R.J., Murphy, G.P. and Harberd, N.P. 1997. The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev. 11: 3194–3205.

    PubMed  CAS  Google Scholar 

  • Peng, J.R., Richards, D.E., Hartley, N.M., Murphy, G.P., Devos, K.M., Flintham, J.E., Beales, J., Fish, L.J., Worland, A.J., Pel-ica, F., Sudhakar, D., Christou, P., Snape, J.W., Gale, M.D. and Harberd, N.P. 1999. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400: 256–261.

    PubMed  CAS  Google Scholar 

  • Petrov, D.A. and Haiti, D.L. 1997. Trash DNA is what gets thrown away: high rate of DNA loss in Dwsophila. Gene 205: 279–289.

    PubMed  CAS  Google Scholar 

  • Pickett, F.B. and Meeks-Wagener, D.R. 1995. Seeing double: appreciating genetic redundancy. Plant Cell 7: 1347–1356.

    PubMed  CAS  Google Scholar 

  • Ranz, J.M., Casals, F. and Ruiz, A. 2001. How malleable is the eukaryotic genome? Extreme rates of chromosomal rearrangement in the genus Dwsophila. Genome Res. 11: 230–239.

    PubMed  CAS  Google Scholar 

  • Reeves, G., Francis, D., Davies, M.S., Rogers, H.J. and Hodkinson, T.R. 1998. Genome size is negatively correlated with altitude in natural populations of Dactylis glomerata. Ann. Bot. 82: 99–105.

    Google Scholar 

  • Roberts, L., Reeves, C., Steele, N. and King, G.J. 1995. Training neural networks to identify coding regions in genomic DNA. Proceedings of the 3rd International Conference on Artificial Neural Networks, Cambridge, June 1995, pp. 399–403. IEE Conference publication.

    Google Scholar 

  • Roth, G., Blanke, J. and Wake, D.B. 1994. Cell size predicts morphological complexity in the brains of frogs and salamanders. Proc. Natl. Acad. Sci. USA 91: 4796.

    PubMed  CAS  Google Scholar 

  • Salinas, J., Matassi, G., Montera, L.M. and Bernardi, G. 1988. Compositional compartmentalization and compositional patterns in the nuclear genomes of plants. Nucl. Acids Res. 16: 4269–4285.

    PubMed  CAS  Google Scholar 

  • Sankoff, D. and Nadeau, J.H. (Eds.). 2000. Comparative Genomics: Empirical and Analytical Approaches to Gene Order Dynamics, Map Alignment and the Evolution of Gene Families. Kluwer Academic Publishers, Dordrecht, Netherlands.

    Google Scholar 

  • SanMiguel, P., Tikhonov, A., Jin, Y.-K., Motchoulskaia, N., Za-kharov, D., Melake Berhan, A., Springer, P.S., Edwards, K.J., Avramova, Z. and Bennetzen, J.L. 1996. Nested retrotransposons in the intergenic regions of the maize genome. Science 274: 765–768.

    PubMed  CAS  Google Scholar 

  • SanMiguel, P., Gaut, B.S., Tikhonov, A., Nakajima, Y. and Bennet-zen, J.L. 1998. The paleontology of intergene retrotransposons of maize. Nature Genet 2: 43–45.

    Google Scholar 

  • Scheid, O.M., Jakovleva., L., Asfar., K., Maluszynska, J., Paszkowski., J. 1996. A change in ploidy can modify epigenetic silencing. Proc. Natl. Acad. Sci. USA 93: 7114–7119.

    Google Scholar 

  • Schmidt, R. 2000. Synteny: recent advances and future prospects. Curr. Opin. Plant Biol. 3: 97–102.

    PubMed  CAS  Google Scholar 

  • Schmidt, R. 2001. Plant genome evolution: lessons from comparative genomics at the DNA level. Plant. Mol. Biol., this issue.

    Google Scholar 

  • Schmidt, T. and Heslop-Harrison, J.S. 1998. Genomes, genes and junk: the large-scale organization of plant genomes. Trends Plant Sci. 3:195–199.

    Google Scholar 

  • Schoen, D.J. 2000. Comparative genomics, marker density and statistical analysis of chromosome rearrangements. Genetics 154: 943–952.

    PubMed  CAS  Google Scholar 

  • Sentoku, N., Sato, Y., Kurata, N., Ito, Y., Kitano, H. and Matsuoka, M. 1999. Regional expression of the rice kn1-type homeobox gene family during embryo, shoot, and flower development. Plant Cell 11: 1651–1663.

    PubMed  CAS  Google Scholar 

  • Sharpe, A.G., Parkin, I.A.P., Keith, D.J. and Lydiate, D.J. 1995. Frequent nonreciprocal translocations in the amphidiploid genome of oilseed rape (Brassica napus). Genome 38: 1112–1121.

    PubMed  CAS  Google Scholar 

  • Sherman, J.D. and Stack, S.M. 1995. Two-dimensional spreads of synaptonemal complexes from solanaceous plants. VI. High-resolution recombination nodule map for tomato Lycopersicon esculentum. Genetics 141: 683–708.

    PubMed  CAS  Google Scholar 

  • Shields, R. 1993. Plant genetics: pastoral synteny. Nature 365: 297–298.

    Google Scholar 

  • Smith, L.B. and King, G.J. 2000. The distribution of BoCAL-a alleles in Brassica oleracea is consistent with a genetic model for curd development and domestication of the cauliflower. Mol. Breed. 6: 603–613.

    Google Scholar 

  • Soltis, P.S. and Soltis, D.E. 2000. The role of genetic and genomic attributes in the success of polyploids. Proc. Natl. Acad. Sci. USA 97: 7051–7057.

    PubMed  CAS  Google Scholar 

  • Sparrow, A.H. and Nauman, A.F. 1976. Evolution of genome size by DNA doublings. Science 192: 524–529.

    PubMed  CAS  Google Scholar 

  • Stebbins, G.L. 1971. Chromosomal Evolution in Higher Plants. Edward Arnold, London.

    Google Scholar 

  • Stephens, S.G. 1951. Evolution of the gene: ‘homologous’ genetic loci in Gossypium. Cold Spring Harb. Symp. Quant. Biol. 16: 131–140.

    PubMed  CAS  Google Scholar 

  • Sueoka, N. 1961. Correlation between base composition of deoxyribonucleic acid and amino acid composition of protein Proc. Natl. Acad. Sci. USA 47: 1141–1149.

    CAS  Google Scholar 

  • Tanksley, S.D. et al. 1992. High density molecular linkage maps of the tomato and potato genomes. Genetics 132: 1141–1160.

    PubMed  CAS  Google Scholar 

  • Tanksley, S.D., Bernatzky, R., Lapitan, N.L. and Prince, J.P. 1988. Conservation of gene repertoire but not gene order in pepper and tomato. Proc. Natl. Acad. Sci. USA 85: 6419–6423.

    PubMed  CAS  Google Scholar 

  • Ticher, A. and Graur, D. 1989. Nucleic acid composition, codon usage, and the rate of synonymous substitution in protein-coding genes. J. Mol. Evol. 28:286–298.

    PubMed  CAS  Google Scholar 

  • Tikhonov, A.P., SanMiguel, P.J., Nakajima, Y., Gorenstein, N.M., Bennetzen, J.L. and Avramova, Z. 1999. Colinearity and its exceptions in orthologous adh regions of maize and sorghum. Proc. Natl. Acad. Sci. USA 96: 7409–7414.

    PubMed  CAS  Google Scholar 

  • Trachtulec, Z.., Hamvas, R.M., Forejt, J., Lehrach, H.R., Vincek, V., Klein, J. 1997. Linkage of TATA-binding protein and proteasome subunit C5 genes in mice and humans reveals synteny conserved between mammals and invertebrates. Genomics 44: 1–7.

    PubMed  CAS  Google Scholar 

  • Trifonov, E.N. 1992. DNA as a language. In: W.A. Lim, J.W. Fickett, C.R. Cantor and R.J. Robbins (Eds) The 2nd International Conference on Bioinformatics, Supercomputing and Complex Genome Analysis, 4–7 June, St. Petersburg Beach, Florida. World Scientific, New Jersey.

    Google Scholar 

  • van Dodeweerd, A.-M., Hall, C.R., Bent, E.G., Johnson, S.J., Bevan, M.W and Bancroft, I. 1999. Identification and analysis of homeologous segments of the genomes of rice and Arabidopsis thaliana. Genome 42: 887–892.

    PubMed  Google Scholar 

  • van’ t Hof, J. and Sparrow, A.H. 1963. A relationship between DNA content, nuclear volume and minimum generation time. Proc. Natl. Acad. Sci. USA. 49: 897–902.

    CAS  Google Scholar 

  • Vision, T.J., Brown, D.G. and Tanksley S.D. 2000. The origins of genomic duplications in Arabidopsis. Science 290: 2114–2117.

    PubMed  CAS  Google Scholar 

  • Vu, T.H. and Hoffman, A.R. 2000. Comparative genomics sheds light on mechanisms of genomic imprinting. Genome Res. 10: 1660–1663.

    PubMed  CAS  Google Scholar 

  • Wagner, A. 1994. Evolution of gene networks by gene duplications: a mathematical model and its implications on genome organisation. Proc. Natl. Acad. Sci. USA 91: 4387–4391.

    PubMed  CAS  Google Scholar 

  • Wagner, A. 1998. The fate of duplicated genes: loss of function? Bioessays 20: 785–788.

    PubMed  CAS  Google Scholar 

  • Wakimoto B.T. 1998. Beyond the nucleosome: epigenetic aspects of position effect variegation in Drosophila. Cell 93: 321–324.

    PubMed  CAS  Google Scholar 

  • Wendel, J.F. 2000. Genome evolution in polyploids. Plant Mol. Biol. 42: 225–249.

    PubMed  CAS  Google Scholar 

  • White, O., Soderlund, C., Shanmugan, P. and Fields, C 1992. Information contents and dinucleotide compositions of plant intron sequences vary with evolutionary origin. Plant Mol. Biol. 19: 1057–1064.

    PubMed  CAS  Google Scholar 

  • Wolfe, K.H., Gouy, M., Yang, Y.-W., Sharp, P.M. and Li, W.-H. 1989. Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data. Proc. Natl. Acad. Sci. USA 86: 6201–6205.

    PubMed  CAS  Google Scholar 

  • Yoder, J.A., Walsh, C.P. and Bestor, T.H. 1997. Cytosine methyla-tion and the ecology of intragenomic parasites. Trends Genet. 13: 335–340.

    PubMed  CAS  Google Scholar 

  • Zwierzkowski, Z., Tayyar, R., Brunell, M. and Lukaszewski, A.J. 1998. Genome recombination in intergeneric hybrids between tetraploid Festuca pratensis and Lolium multiflorum. J. Hered. 89: 324–328.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

King, G.J. (2002). Through a genome, darkly: comparative analysis of plant chromosomal DNA. In: Town, C. (eds) Functional Genomics. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0448-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0448-0_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3903-1

  • Online ISBN: 978-94-010-0448-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics