Skip to main content

Variational Principles, Geometry and Topology of Lagrangian-Averaged Fluid Dynamics

  • Chapter

Part of the book series: NATO Science Series ((NAII,volume 47))

Abstract

The Lagrangian average (LA) of the ideal fluid equations preserves their transport structure. This transport structure is responsible for the Kelvin circulation theorem of the LA flow and, hence, for its convection of potential vorticity and its conservation of helicity. Lagrangian averaging also preserves the Euler-Poincaré (EP) variational framework that implies the LA fluid equations. This is expressed in the Lagrangian-averaged Euler- Poincaré (LAEP) theorem proven here and illustrated for the Lagrangian average Euler (LAE) equations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, D.G. & Mclntyre, M.E. (1978) An exact theory of nonlinear waves on a Lagrangian-mean flow. J. Fluid Mech. 89, 609–646.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Arnold, V.I. (1966) Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier (Grenoble) 16, 319–361.

    Article  Google Scholar 

  3. Chen, S.Y., Foias, C., Holm, D.D., Olson, E.J., Titi, E.S. & Wynne, S. (1998) The Camassa-Holm equations as a closure model for turbulent channel and pipe flows. Phys. Rev. Lett. 81, 5338–5341.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Chen, S.Y., Foias, C., Holm, D.D., Olson, E.J., Titi, E.S. & Wynne, S. (1999) The Camassa-Holm equations and turbulence in pipes and channels. Physica D 133, 49–65.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Chen, S.Y., Foias, C., Holm, D.D., Olson, E.J., Titi, E.S. & Wynne, S. (1999) A connection between the Camassa-Holm equations and turbulence in pipes and channels. Phys. Fluids 11, 2343–2353.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Chen, S.Y., Holm, D.D., Margolin, L.G. & Zhang, R. (1999) Direct numerical simulations of the Navier-Stokes alpha model. Physica D 133, 66–83.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Foias, C., Holm, D.D. & Titi, E.S. (1999) The Three Dimensional Viscous Camassa-Holm Equations, and Their Relation to the Navier-Stokes Equations and Turbulence Theory. J. Diff. Eq., to appear.

    Google Scholar 

  8. Foias, C., Holm, D.D. & Titi, E.S. (2001) The Navier-Stokes-alpha model of fluid turbulence. Physica D, to appear.

    Google Scholar 

  9. Gjaja, I. & Holm, D.D. (1996) Self-consistent wave-mean flow interaction dynamics and its Hamiltonian formulation for a rotating stratified incompressible fluid. Physica D 98, 343–378.

    Article  MathSciNet  MATH  Google Scholar 

  10. Holm, D.D. (1999) Fluctuation effects on 3D Lagrangian mean and Eulerian mean fluid motion. Physica D 133, 215–269.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Holm, D.D. (2001) Averaged Lagrangians and the mean dynamical effects of fluctuations in continuum mechanics. Physica D, to appear.

    Google Scholar 

  12. Holm, D.D., Marsden, J.E. & Ratiu, T.S. (1998) The Euler-Poincaré equations and semidirect products with applications to continuum theories. Adv. in Math. 137, 1–81.

    Article  MathSciNet  MATH  Google Scholar 

  13. Holm, D.D., Marsden, J.E. & Ratiu, T.S. (1998) Euler-Poincaré models of ideal fluids with nonlinear dispersion. Phys. Rev. Lett. 80, 4173–4177.

    Article  ADS  Google Scholar 

  14. Holm, D.D., Marsden, J.E., Ratiu, T.S. & Weinstein, A. (1985) Nonlinear stability of fluid and plasma equilibria. Physics Reports 123, 1–116.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Marsden, J.E. & Ratiu, T.S. (1999) Introduction to Mechanics and Symmetry. Springer, New York.

    MATH  Google Scholar 

  16. Marsden, J.E.& Shkoller, S. (2001) The anisotropic averaged Euler equations. J. Rat. Mech. Anal., to appear.

    Google Scholar 

  17. Marsden, J.E., Ratiu, T.S. & Shkoller, S. (2001) The geometry and analysis of the averaged Euler equations and a new diffeomorphism group. Geom. Funct. Anal., to appear.

    Google Scholar 

  18. Moffatt, H.K. (1969) The degree of knottedness of tangled vortex lines. J. Fluid Mech. 35, 117–129.

    Article  ADS  MATH  Google Scholar 

  19. Shkoller, S. (1998) Geometry and curvature of diffeomorphism groups with H 1 metric and mean hydrodynamics. J. Funct. Anal. 160, 337–365.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Holm, D.D. (2001). Variational Principles, Geometry and Topology of Lagrangian-Averaged Fluid Dynamics. In: Ricca, R.L. (eds) An Introduction to the Geometry and Topology of Fluid Flows. NATO Science Series, vol 47. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0446-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0446-6_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0207-6

  • Online ISBN: 978-94-010-0446-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics