Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 47))

  • 872 Accesses

Abstract

Observers and theorists describing magnetic field structures often use terms such as twisted, kinked, sheared and braided. All these aspects of field structure can be quantified using topological invariants. While topological quantities obey conservation laws in systems with no resistivity and simple boundary conditions, in more general circumstances they can change in time as the physical system evolves. Topological structure is often thought of as a global property of a magnetic system. However, some aspects of structure can be examined in sub-volumes of space. This allows us to examine transport of structure from one region of space to another. We illustrate by examining the transport of magnetic helicity through parts of the sun and heliosphere during the solar cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aly, J. J. (1984) On some properties of force-free magnetic fields in infinite regions of space. Astrophys. J. 283, 349–362.

    Article  ADS  Google Scholar 

  2. Arnold, V.I. & Khesin, B.A. (1998) Topological Methods in Hydrodynamics. Springer, New York.

    MATH  Google Scholar 

  3. Berger M.A. & Field G.B. (1984) The topological properties of magnetic helicity. J. Fluid Mech. 147, 133–148.

    Article  MathSciNet  ADS  Google Scholar 

  4. Berger, M.A. (1984) Rigorous new limits on magnetic helicity dissipation in the solar corona. Geophys. & Astrophys.Fluid Dyn. 30, 79–104.

    Article  ADS  Google Scholar 

  5. Berger, M.A. (1999) Magnetic Helicity in Space Physics. In Magnetic Helicity in Space and Laboratory Plasmas (ed. M.R. Brown, R.C. Canfield & A.A. Pevtsov), pp. 1–11. AGU Geophysical Monograph Series 111, Washington D.C..

    Google Scholar 

  6. Bieber, J.W., Evenson, P.A. & Matthaeus, W.H. (1987) Magnetic helicity of the Parker field. Astrophys. J. 315, 700–705.

    Article  ADS  Google Scholar 

  7. Berger, M.A. & Ruzmaikin, A. (2000) Helicity production by differential rotation. J. Geophys. Res. 105, 10481–10490.

    Article  ADS  Google Scholar 

  8. Brown, M.R., Canfield R.C., & Pevtsov A.A. (editors) (1999) Magnetic Helicity in Space and Laboratory Plasmas. AGU Geophysical Monograph Series 111, Washington D.C..

    Google Scholar 

  9. Charbonneau, P., Dikpati, M. & Gilman, P.A. (1999) Stability of the solar latitudinal differential rotation inferred from helioseismic data. Astrophys. J 526, 523–537.

    Article  ADS  Google Scholar 

  10. Finn, J. & Antonsen, T.M. (1985) Magnetic helicity: what is it, and what is it good for? Comments on Plasma Phys. and Contr. Fusion. 9, 111–123.

    Google Scholar 

  11. Low, B.C. (1994) Magnetohydrodynamic processes in the solar corona — flares, coronal mass ejections, and magnetic helicity. Physics Plasmas 1, 1684–1690.

    Article  ADS  Google Scholar 

  12. Martin, S.F. & McAllister A. (1997) In Coronal Mass Ejections (ed. N. Crooker, J.-A. Josselyn & J. Feynman), pp. 127–138. Geophys. Monog. 99, Amer. Geophys. Union.

    Google Scholar 

  13. Moffatt, H.K. (1969) The degree of knottedness of tangled vortex lines. J. Fluid Mech. 35, 117–129.

    Article  ADS  MATH  Google Scholar 

  14. Parker, E.N. (1979) Cosmical Magnetic Fields. Oxford University Press, Oxford.

    Google Scholar 

  15. Priest, E.R. & Forbes, T.R. (1999) Magnetic Reconnection: MED theory and applications. Cambridge University Press, Cambridge.

    Google Scholar 

  16. Rust, D. (1994) Spawning and shedding helical magnetic fields in the solar atmosphere. Geophys. Res. Lett. 21, 241–244.

    Article  ADS  Google Scholar 

  17. Rust, D. (1997) Helicity conservation. In Coronal Mass Ejections, p. 127. (ed. N. Crooker, J.-A. Josselyn & J. Feynman), pp. 119-125. Geophys. Monog. 99, Amer. Geophys. Union.

    Google Scholar 

  18. Wright, A. & Berger, M.A. (1989) The effect of reconnection upon the linkage and interior structure of magnetic flux tubes. J. Geophys. Res. 94, 1295–1302.

    Article  ADS  Google Scholar 

  19. Zhao, X.P. & Hoeksema, J.T. (1993) Unique determination of model coronal magnetic fields using photospheric observations. Solar Phys. 143, 41–48.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Berger, M.A. (2001). Measures of Topological Structure in Magnetic Fields. In: Ricca, R.L. (eds) An Introduction to the Geometry and Topology of Fluid Flows. NATO Science Series, vol 47. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0446-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0446-6_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0207-6

  • Online ISBN: 978-94-010-0446-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics