Skip to main content

Surface Microrelief Influence On Hydrogen Interaction With Materials

  • Chapter
Hydrogen and Helium Recycling at Plasma Facing Materials

Part of the book series: NATO Science Series ((NAII,volume 54))

  • 274 Accesses

Abstract

The problem of hydrogen isotope recycling in fusion devices is of crucial interest due to two main reasons: the first one is the tritium retention in fusion materials, the second one is the problem of adequate reactor operation at wall fuelling and plasma particles exhaust by PFC [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ITER Physics Basis, (1999) Nuclear Fusion 39, n 12

    Google Scholar 

  2. Eckstein W. (1991) Computer simulations of Ion-Solid Interaction Springer Series in Material Science,. 10, Springer-Verlag Berlin

    Google Scholar 

  3. Koborov N.N., Kurnaev V.A. (1983). On the influence of surface roughness on the small angle scattering of hydrogen ions. Poverhnost, Fisika, Chemiya, Mechanika. No 8, 45–48.

    Google Scholar 

  4. Koborov N.N., Kurnaev V.A., Sotnikov V.M. (1984) The surface roughness influence on the light ions backscattering. J. Nucl. Mater., 128/129, 691–693

    Google Scholar 

  5. Kurnaev V.A. et al (1990) Low energy hydrogen and helium backscattering from surfaces with structure. J. Nucl. Mater, 176/177, 630–634

    Google Scholar 

  6. Bokhulenkov S.N., Zabeida O.V., Koborov N.N. and Kurnaev V.A. Effect of the orientation of surface microprofile of tungsten on the reflection of deuterium ions and atoms. (1990) Izvestia Akademii Nauk SSSR, Seriya Fizicheskaya, 54, 1240–1243.

    CAS  Google Scholar 

  7. Hofer W.O. (1991) Energy, angle and mass distributions of sputtered particles, in R. Behrisch and W. Wittmarck (eds.), Characteristics of Sputtered Particles Technical Applications, Topics in Applied Physics series, Springer-Verlag, Berlin Heidelberg, pp. 26–134

    Google Scholar 

  8. Roth J., Eckstein W., Gauther E., Laszlo J.(1999) J. Nucl. Mater. 179/181, 34

    Google Scholar 

  9. Sotnikov V.M. (1989) Poverhnost, Kysika, Chemia, Mechanika. No3, 30–35 (In Russian)

    Google Scholar 

  10. Sotnikov V.M. Computer simulations of proton and argon ion backscattering from relief surface, (1992). Poverhnost, Kysika, Chemia, Mechanika. No3, 32–39 (In Russian)

    Google Scholar 

  11. Ruzic D.N., Chin H.K. (1989) J.Nucl.Mater. 162-164, 904

    CAS  Google Scholar 

  12. Ruzic D.N. (1990) Nucl. Instr. Meth. B47. 118

    CAS  Google Scholar 

  13. Küstner M., Eckstein W., Dose W., Roth J. (1998) The influence of surface roughness on the angular of the sputter yield. Nucl. Instr. Meth. B145, 320–331

    Google Scholar 

  14. Küstner M., Eckstein W., Hechtl E., Roth J. (1999) Angular dependence of the sputtering yield of rough beryllium surfaces. J.Nucl.Mater. 265, 22–27

    Google Scholar 

  15. Kurnaev V.A., Golubeva A.V., Evanov A.A., Levchuk D.V., Pisarev A.A., Trifonov N.N. (2001) Trapping of eV deuterium ions by niobium at glancing incidence. J.Nucl.Mater. 290-293, 112–115

    CAS  Google Scholar 

  16. Koborov N.N., Kuzovlev A.I., Kurnaev V.A. et al. Energy distributions o particles transmitted through free foils at oblique incidence. Nucl.Inst.Meth. B129, 5–10.

    Google Scholar 

  17. Kuzovlev A.I., Kurnaev V.A., Remizovitch V.S., Trifonov N.N. (1998) Refraction of the beam of charged particles during inclined transmission through a thin target. Nucl.Inst.Meth. B135, 477–481

    Google Scholar 

  18. Kurnaev V.A., Trifonov N.N., Drozdov M.N., Salashchenko N.N. (2000) On the possibility of the in situ growth control and nondestructive depth profiling of ultra thin multilayer structures using keV hydrogen ions. Vacuum 56, 253–255

    CAS  Google Scholar 

  19. Kurnaev V.A., Marinyuk V.V., Remizovitch V.S., Trifonov N.N. (2000) Contributions of the inward and backward ion fluxes to sputtering at grazing incidence of the beam. Nucl. Inst.Meth. B164-165, 848–853

    Google Scholar 

  20. Bondurko V.V., Evanov A.A., Kurnaev V.A., Levchuk D.V. (1999) A setup for studing the capture and reflection of slow ions by the thermodesorption technique. Instr. And Exper. Tech. 42, 655–657

    Google Scholar 

  21. Kurnaev V.A., Mashkova E.S., Molchanov V.A. (1985) Light ion reflection from solid surfaces. Energoatomizdat. Moscow (In Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Golubeva, A.V., Evanov, A.A., Koborov, N.N., Kurnaev, V.A., Levchuk, S.S., Trifonov, N.N. (2002). Surface Microrelief Influence On Hydrogen Interaction With Materials. In: Hassanein, A. (eds) Hydrogen and Helium Recycling at Plasma Facing Materials. NATO Science Series, vol 54. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0444-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0444-2_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0512-1

  • Online ISBN: 978-94-010-0444-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics