Skip to main content

Effect Of Hydrogen Sorption On Surface Morphology Of Pyrolytic Graphite

  • Chapter
  • 274 Accesses

Part of the book series: NATO Science Series ((NAII,volume 54))

Abstract

Interaction of pyrolytic graphite with atomic hydrogen is studied by means of thermal desorption spectrometry, atomic force and scanning tunneling microscopy. Both kinetic and microscopic measurements justify that hydrogen is absorbed beneath the surface and stored in the interlayer spaces of graphite as H2 molecules. The experimental results are treated within the framework of intercalation model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zabel, H. and Solin, S.A. (1990) Graphite Intercalation Compounds, Springer Series in Material Science, 14.

    Google Scholar 

  2. Walter, J., Shioyama, H., Sawada, Y., and Hara, S. (1988) Electronic diffraction and scanning tunneling microscope studies of TaC15-graphite intercalation compounds, Carbon, 36, 1277–1284.

    Google Scholar 

  3. Uesugi, K., and Yao, T. (1992) Nanometer-scale fabrication of graphite surfaces by scanning tunneling microscopy, 42-44, 1443–1445.

    CAS  Google Scholar 

  4. Inaba, M., Siroma, Z., Funabike, A., Ogumi, Z., Abe, T., Mizutani, Y., and Asana, M. (1996) Electrochemical scanning tunneling microscopy observation of highly oriented pyrolytic graphite surface reactions in an ethylene carbonate-based electrolyte solution, Langmuir 12, 1535–1540.

    CAS  Google Scholar 

  5. Atamny, F., and Baiker, A. (1998) Investigation of carbon-based catalysts by scanning tunneling microscopy: opportunities and limitations, Applied Catalysis A 173, 201–230.

    CAS  Google Scholar 

  6. Denisov, E.A., Kompaniets, T.N., and Kurdyumov, A.A. (2000) Atomic hydrogen-graphite interaction, Hydrogen Recycling at Plasma Facing Materials, NATO Science Series, II Mathematics, Physics and Chemistry 1, 273–280.

    CAS  Google Scholar 

  7. Denisov, E.A., and Kompaniets, T.N. (2001) Interaction of graphite with atomic hydrogen, Russian Technical Physics, 46, 240–244.

    CAS  Google Scholar 

  8. Denisov, E.A., Kompaniets, T.N., Kurdyumov, A.A., and Mazaev, S.N. (1998) Atomic hydrogen interaction with various graphite types, Plasma Devices and Operations, 6, 265–269.

    CAS  Google Scholar 

  9. Denisov, E.A., Kompaniets, T.N., Kurdyumov, A.A., and Mazaev, S.N. (1996) Molecular hydrogen interaction with unirradiated graphite, J.Nucl.Mater. 233-237, 1218–1222.

    CAS  Google Scholar 

  10. Waqar, Z., Denisov, E.A., Kompaniets, T.N., Makarenko, I.V., and Titkov, A.N.(2001) The surface morphology of pyrolytic graphite irradiated by atomic hydrogen, Russian Technical Physics, 46, 773–777.

    CAS  Google Scholar 

  11. Phylipps, V., Vietzke, E., Erdwed, M., and Flaskamp K. (1987) Thermal desorption of hydrogen and various hydrocarbons from graphite bombarded with thermal and energetic hydrogen, J.Nucl.Mater. 145-147, 292–296.

    Google Scholar 

  12. Pitcher, C.S., Ausiello, O., Haasz, A.A., and Stangeby, P.C. (1984) Interaction of a sub-eV H0 atom beam with carbon: methane production and hydrogen retention, J.Nucl.Mater. 128-129, 597–600.

    CAS  Google Scholar 

  13. Rubel, M., Emmoth, B., and Vienhold, P. (1994) Deuterium interaction with silicon graphite materials exposed to the tokamak plasma, Vacuum 45, 429–434.

    CAS  Google Scholar 

  14. Davis, J.V., and Haazs, A.A. (1995) Reemission and thermal desorption of D0, D2 and CD4 from graphite, J.Nucl.Mater. 220-222, 832–835.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Denisov, E.A., Kompaniets, T.N., Makarenko, I.V., Waqar, Z., Titkov, A.N. (2002). Effect Of Hydrogen Sorption On Surface Morphology Of Pyrolytic Graphite. In: Hassanein, A. (eds) Hydrogen and Helium Recycling at Plasma Facing Materials. NATO Science Series, vol 54. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0444-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0444-2_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0512-1

  • Online ISBN: 978-94-010-0444-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics