Skip to main content

Part of the book series: NATO Science Series ((ASIC,volume 568))

Abstract

The dynamics of colloidal suspensions has been studied in great detail by light scattering experiments. By the introduction of photon crosscorrelation techniques to suppress multiple scattering it has become possible to measure dynamic structure factors even for concentrated suspensions over a wide time-range. The measured structure factors are in general not single exponential functions of time so that the underlying relaxation process of density fluctuations is not a simple diffusion process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.N. Pusey, in Liquids, Freezing and Glass Transition, edited by J.P. Hansen, D. Levesque and J. Zinn-Justin, part II, Amsterdam, 1991, p. 763.

    Google Scholar 

  2. J.K.G. Dhont, An Introduction to Dynamics of Colloids, Amsterdam, 1996.

    Google Scholar 

  3. G. Nägele, Phys. Rep. 272, 215 (1996).

    Article  Google Scholar 

  4. R. Klein, in The Physics of Complex Systems, edited by F. Mallamace and H.E. Stanley, Amsterdam 1997, p. 301.

    Google Scholar 

  5. For a review see D.A. Weitz and D.J. Pine, in Dynamic Light Scattering, edited by W. Brown, Oxford, 1993, p. 652.

    Google Scholar 

  6. D.J. Deutch and I. Oppenheim, J. Chem. Phys. 54, 3547 (1971); T.J Murphy and J.L. Aguirre, J. Chem. Phys. 57, 2098 (1972); J.M. Deutch and I. Oppenheim, Faraday Disc. Chem. Soc. 83, 1 (1987).

    Article  CAS  Google Scholar 

  7. W. Hess and R. Klein, Physica A 94, 71 (1978); D.L. Ermak and J.A. McCammon, J. Chem. Phys. 69, 1352 (1978).

    Article  Google Scholar 

  8. B. U. Felderhof, J. Phys. A 11, 929 (1978).

    Article  Google Scholar 

  9. G. Nägele, O. Kellerbauer, B. Steininger and R. Klein, Phys. Rev.E 47, 2562 (1993).

    Article  Google Scholar 

  10. A.P. Philipse and A. Vrij, J. Chem. Phys. 88, 6459 (1988).

    Article  CAS  Google Scholar 

  11. R. Klein and G. Nägele, Nuovo Cim. 16D, 963 (1994).

    CAS  Google Scholar 

  12. W. Härtl, C. Beck and R. Hempelmann, J.Chem. Phys. 110, 7070 (1999).

    Article  Google Scholar 

  13. G. Nägele and P. Baur, Physica A 245, 297 (1997).

    Article  Google Scholar 

  14. G.K. Batchelor, J. Fluid Mech 52, 245 (1972).

    Article  Google Scholar 

  15. D.M.E. Thies-Weesie, A.P. Philipse, G. Nägele, B. Mandl and R. Klein, J. Coll. Interf. Sci. 176, 43 (1995).

    Article  CAS  Google Scholar 

  16. G. Nägele, M. Watzlaweck and R. Klein, Progr. Colloid Polym. Sci. 104, 31 (1997); M. Watzlaweck and G. Nägele, J. Coll. Interf. Sci. (1999).

    Article  Google Scholar 

  17. B. Cichocki and B.U. Felderhof, J. Chem. Phys. 89, 1049 (1988).

    Article  CAS  Google Scholar 

  18. C.W.J. Beenakker and P. Mazur, Physica A 120, 388 (1983).

    Article  Google Scholar 

  19. M. Watzlaweck and G. Nägele, Phys. Rev.E 56, 1258 (1997).

    Article  Google Scholar 

  20. E. Overbeck and C. Sinn, Phys.Rev.E.

    Google Scholar 

  21. V. Degiorgio, R. Piazza and R.B. Jones, Phys. Rev.E 52, 2707 (1995).

    Article  CAS  Google Scholar 

  22. M. Watzlaweck and G. Nägele, Physica A 235, 56 (1997)

    Article  Google Scholar 

  23. P.N. Segrè and P.N. Pusey, Phys. Rev. Letters 77, 771 (1996).

    Article  Google Scholar 

  24. Details of the derivation of the result for M c (k,t) are given in ref. [1]d).

    Google Scholar 

  25. G. Nägele and P. Baur, Physica A 245, 297 (1997).

    Google Scholar 

  26. G. Nägele, J. Bergenholtz and J.K.G. Dhont, J. Chem. Phys. 110, 7037 (1999).

    Article  Google Scholar 

  27. K. Kawasaki, Physica A 215, 61 (1995).

    Article  Google Scholar 

  28. G. Nägele and J.K.G. Dhont, J. Chem. Phys. 108, 9566 (1998).

    Article  Google Scholar 

  29. W. Götze, in Liquids, Freezing and Glass Transition, edited by J.P. Hansen, D. Levesque, and J. Zinn—Justin, Amsterdam 1991, p. 287; W. Götze and L. Sjögren, Rep. Prog. Phys. 55, 241 (1992). M. Fuchs, Transp. Theory Stat. Phys. 24, 855 (1995).

    Google Scholar 

  30. J.P. Hansen and L.R. McDonald, Theory of Simple Liquids, New York, 1986.

    Google Scholar 

  31. L. Verlet and J.J. Weis, Phys. Rev. A 5, 939 (1972).

    Article  Google Scholar 

  32. A. J. Banchio, J. Bergenholtz, and G. Nägele, Phys. Rev. Lett. 82, 1792 (1999).

    Article  CAS  Google Scholar 

  33. B. Cichocki and K. Hinsen, Physica A 187, 133 (1992).

    Article  CAS  Google Scholar 

  34. I. Moriguchi, J. Chem. Phys. 106, 8624 (1997).

    Article  CAS  Google Scholar 

  35. S. Hanna, W. Hess, and R. Klein, Physica A 111, 181 (1982).

    Article  Google Scholar 

  36. H. Löwen, T. Palberg and R. Simon, Phys. Rev. Letters 70, 1557 (1993).

    Article  Google Scholar 

  37. A. J. Banchio, G. Nägele, and J. Bergenholtz, to be submitted.

    Google Scholar 

  38. W. Härtl, H. Versmold, U. Wittig and P. Linse, J. Chem. Phys. 97, 7797 (1992)

    Article  Google Scholar 

  39. K.J. Gaylor, I.K. Snook, W. van Megen, and R.O. Watts, J. Phys. A 13, 2513 (1980).

    Article  CAS  Google Scholar 

  40. J.A. Lopez-Esquivel and J.L. Arauz-Lara, J Chem. Phys. 96, 1651 (1992).

    Article  CAS  Google Scholar 

  41. G. Nägele, P. Baur and R. Klein, Physica A 231, 49 (1996).

    Article  Google Scholar 

  42. T.W. Taylor and B.J. Ackerson, J. Chem. Phys. 83, 2441 (1985).

    Article  CAS  Google Scholar 

  43. J. Müller, Ph. D. thesis, Universität Kiel, 1993.

    Google Scholar 

  44. P.N. Pusey, H.M. Fijnaut and A. Vrij, J.Chem. Phys. 77, 4270 (1982).

    Article  CAS  Google Scholar 

  45. M. Medina-Noyola, Phys. Rev. Letters 60, 2705 (1988).

    Article  CAS  Google Scholar 

  46. J.F. Brady, J. Chem. Phys. 99, 567 (1993); J. Fluid Mech 272, 109 (1994).

    Article  CAS  Google Scholar 

  47. A. van Blaaderen, J. Peetermans, G. Maret, and J.K.G. Dhont, J. Chem. Phys. 96, 4591 (1992).

    Article  Google Scholar 

  48. W. van Megen and S. M. Underwood, J. Chem. Phys. 91, 552 (1989).

    Article  Google Scholar 

  49. R.A. Lionberger and W.B. Rüssel, J. Rheol. 38, 1885 (1994).

    Article  CAS  Google Scholar 

  50. P.N. Segrè, S.P. Meeker, P.N. Pusey, and W.C.K. Poon, Phys. Rev. Letters 75, 958 (1995).

    Article  Google Scholar 

  51. A. Imhof, A. van Blaaderen, G. Maret, J. Mellema, and J.K.G. Dhont J. Chem. Phys. 100 2170 (1994).

    Article  CAS  Google Scholar 

  52. T. Shikata and D.S. Pearson, J. Rheol. 38, 601 (1994).

    Article  Google Scholar 

  53. J.X. Zhu, D.J. Durian, J. Müller, D.A. Weitz, and D.J. Pine, Phys. Rev. Letters 68, 2559 (1992).

    Article  CAS  Google Scholar 

  54. R.J. Phillips, J.F. Brady, and G. Bossis, Phys. Fluids 31, 3462 (1988).

    Article  CAS  Google Scholar 

  55. A.J. Ladd, J. Chem. Phys. 93, 3484 (1990).

    Article  CAS  Google Scholar 

  56. J. Bergenholtz, Phys. Rev.E 58, R4088 (1998).

    Article  CAS  Google Scholar 

  57. G. Nägele and J. Bergenholtz, J. Chem. Phys. 108, 9893 (1998).

    Article  Google Scholar 

  58. T. Geszti, J. Phys. C 16, 5805 (1983).

    Article  CAS  Google Scholar 

  59. R. Verberg, I.M. de Schepper, and E.G.D. Cohen, Phys. Rev.E 55, 3143 (1997).

    Article  CAS  Google Scholar 

  60. B.K. Batchelor and J.T. Green, J. Fluid Mech. 56, 401 (1972).

    Article  Google Scholar 

  61. B. Cichocki and B.U. Felderhof, J.Chem. Phys. 101, 7850 (1994).

    Article  CAS  Google Scholar 

  62. A J. Banchio, G. Nägele, and J.B. Bergenholtz, J. Chem. Phys., to appear.

    Google Scholar 

  63. P.N. Segrè, O.P. Behrend, and P.N. Pusey, Phys. Rev. E 52, 5070 (1995).

    Article  Google Scholar 

  64. P. Strating, Phys. Rev. E 59, 2175 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Klein, R. (2002). Dynamics of Colloidal Suspensions. In: Borsali, R., Pecora, R. (eds) Structure and Dynamics of Polymer and Colloidal Systems. NATO Science Series, vol 568. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0442-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0442-8_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0502-2

  • Online ISBN: 978-94-010-0442-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics