Skip to main content

The Critical Gel

The Universal Material State between Liquid and Solid

  • Chapter

Part of the book series: NATO Science Series ((ASIC,volume 568))

Abstract

Nature allows polymers to pass through the gel point with striking simplicity and elegance. However, what are the rheological properties at the gel point? Is the polymer at the gel point, the ‘critical gel’, at a distinct material state that has its own properties? It seems that these questions, until recently, have not been pursued. The questions might have been avoided since it was well known that the established rheological concepts fail altogether at the gel point: the concept of a viscosity is inapplicable since the viscosity diverges to infinity and the concept of an equilibrium modulus is useless since the modulus is still zero at the gel point. The gel point itself had remained mysterious.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Flory PJ (1941) J Am Chern Soc 63:3083; (1942) J Phys Chern 46: 132–140.

    Article  CAS  Google Scholar 

  2. Stockmayer WH (1943) J Chem Phys 11:45

    Article  CAS  Google Scholar 

  3. Schosseler S, Leibler L (1984) Physique Lett 45, 5

    Article  Google Scholar 

  4. Norisuye T, Takeda M, Shibayama M (1988). Macromol 31:5316–5322

    Article  Google Scholar 

  5. Stauffer D (1985) Introduction to Percolation Theory, Taylor and Francis, Philadelphia, PA

    Book  Google Scholar 

  6. de Gennes PG (1979) Scaling Concepts in Polymer Physics. Cornell University Press, Ithaca

    Google Scholar 

  7. te Nijenhuis, K (1997) Adv Polym Sci 130: 1–252

    Article  Google Scholar 

  8. Winter HH, Mours M (1997). Advances in Polymer Science 134:165–234

    Google Scholar 

  9. Ferry JD (1980) Viscoelastic Properties of Polymers. 3rd ed Wiley, New York

    Google Scholar 

  10. Doi M (1974) Molecular theory ofthe viscoelastic properties of concentrated polymer solutions, ChemPhys Lett 26:269–272

    CAS  Google Scholar 

  11. Doi M, Edwards S (1986) The Theory of Polymer Dynamics. Clarendon Press, Oxford

    Google Scholar 

  12. Vilgis T, Winter HH (1988) Progr Coll Polym Sci 26:494–500

    Article  Google Scholar 

  13. Mours M, Winter HH (1996) Macromolecules 29:7221–7229

    Article  CAS  Google Scholar 

  14. Scanlan JC, Winter HH (1991) Macromolecules 24:47–54

    Article  CAS  Google Scholar 

  15. Tung C-Y, Dynes PJ (1982) J Appl Polym Sci 27: 569

    Article  CAS  Google Scholar 

  16. Chambon F, Winter HH (1985) Polym Bull 13:499–503

    Article  CAS  Google Scholar 

  17. Winter HH, Chambon F (1986). J Rheology 30:367–382

    Article  CAS  Google Scholar 

  18. Chambon F, Winter HH (1987) J Rheol 37:683–697

    Article  Google Scholar 

  19. Larson RG (1988). Butterworths

    Google Scholar 

  20. De Rosa ME, Winter HH (1994) Rheologica Acta 33:220–237

    Google Scholar 

  21. Izuka A, Winter HH, Hashimoto T (1992). Macromolecules 25:2422–2428

    Article  CAS  Google Scholar 

  22. Izuka A, Winter HH, Hashimoto T (1994) Macromolecules 27:6883–6888

    Article  CAS  Google Scholar 

  23. Martin JE, Wilcoxon JP, Adolf D (1987) Phys Rev A 36:1803; (1988) Phys Rev Lett 61:373, Rainer M (1969) Physics Today 17, 62

    Article  CAS  Google Scholar 

  24. Baumgärtel M, Schausberger A, Winter HH (1990). Rheol Acta 29:400–408

    Article  Google Scholar 

  25. Venkataraman SK, Winter HH (1990). Rheologica Acta 29:423–432

    Article  CAS  Google Scholar 

  26. Mours M, Winter HH (1998) Polymer Bulletin 40:267–274

    Article  CAS  Google Scholar 

  27. Shibayama M, Norisuye T (1999). In ‘Slow Dynamics in Complex Systems’ Tokuyama M, Oppenheim I, Eds, American Inst Physics

    Google Scholar 

  28. Holly EE, Venkataraman SK, Chambon F, Winter HH. (1988) J Non-Newt Fluid Mech 27:17–26.

    Article  CAS  Google Scholar 

  29. De Rosa ME, Mours M, Winter HH (1997) Polymer Gels and Networks 5:69–94

    Google Scholar 

  30. Winter HH (1989) Gel Point. Article in: Encyclopedia of Polymer Science and Engineering, Supplement Volume, 2nd Edition, John Wiley & Sons: 349–351

    Google Scholar 

  31. Zosel A (1991) J Adhesion 34:201–209

    Article  CAS  Google Scholar 

  32. Nishinari K, Hofmann KE, Moritaka H, Kohyama K, Nishinari N (1997) Macromol Chem Phys 198:1217–1226

    Article  CAS  Google Scholar 

  33. Zheng X, Tong Z, Xie X, Zeng F (1998). Polym J 30:284–288

    Article  CAS  Google Scholar 

  34. Cabana A, Ait-Kadi A, Juhasz J (1997) J Coll Interface Sci 190:307–312

    Article  CAS  Google Scholar 

  35. te Nijenhuis K, Winter HH (1989). Macromolecules 22:411–414

    Article  Google Scholar 

  36. Li L, Aoki Y (1997). Macromol 30:7835–7841

    Article  CAS  Google Scholar 

  37. Richter S, Heinrich G, Schrvter K, Arndt K-F (2000). Macromol Chem Phys 201: 67

    Article  CAS  Google Scholar 

  38. Pogodina NV, Winter HH (1998) Macramolecules 31:8164–8172

    Article  CAS  Google Scholar 

  39. Pogodina NV, Siddiquee SK, van Egmond JW, Winter HH (1999) Macromolecules 32:1167–1174

    Article  CAS  Google Scholar 

  40. Pogodina NV, Winter HH, Srinivas S (1999). J Poly Sci B: Polymer Physics 37:3512

    Article  CAS  Google Scholar 

  41. Geifer MY, Winter HH (1999) Macromolecules 32: 8974–8981

    Article  Google Scholar 

  42. Horst RH, Winter HH (2000) Macromolecules 33:130–136

    Article  CAS  Google Scholar 

  43. Sakamoto N, Hashimoto T (1998). Macromolecules 31 8493–8502

    Article  CAS  Google Scholar 

  44. Soenen H, Berghmans H, Winter HH, Overbergh N (1997) Polymer 38:5653–5660

    Article  CAS  Google Scholar 

  45. Jeong B, Bae YH, Kim SW (1999) Macromolecules 32:7064–7069

    Article  CAS  Google Scholar 

  46. Kobayashi K, Huang C, Lodge TP (1999) Macromolecules 32:7070–7077

    Article  CAS  Google Scholar 

  47. Keller A, Pedemonte E, Willmouth FM (1970) Nature 225: 538; Kolloid (1970) ZZ Polym 238:385

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Winter, H.H. (2002). The Critical Gel. In: Borsali, R., Pecora, R. (eds) Structure and Dynamics of Polymer and Colloidal Systems. NATO Science Series, vol 568. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0442-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0442-8_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0502-2

  • Online ISBN: 978-94-010-0442-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics