Skip to main content

Structure and Viscosity of Spherical Polyelectrolyte Microgels: A Model for the Polyelectrolyte Effect?

  • Chapter
Structure and Dynamics of Polymer and Colloidal Systems

Part of the book series: NATO Science Series ((ASIC,volume 568))

Abstract

Spherical microgels made of polystyrene sulfonic acid can be regarded as slightly swollen polyelectrolyte “balls” that cannot change their conformation due to the inner cross-linking. Because of their theory-compatible shape (spherical), the practical absence of intramolecular effects and van der Waals interactions, they are regarded as ideal models to examine and benchmark polyelectrolyte theories. In salt-free aqueous solution, both the static structure factor and the solution viscosity are analyzed in terms of their dependencies on the polyelectrolyte concentration, and typical polyelectrolyte behavior is observed, i.e., a steep increase of the reduced specific viscosity with decreasing concentration as well as formation of ordered solution structures. A more complete picture is provided by the systematic examination of macroions over one decade of radii (5nm < R < 70 nm). This mesoscopic range of molecular mass covers the gap between linear polyelectrolytes and classical latex spheres . Solution structuring, phase separation behavior and theconcentration dependence of interparticle distances show the importance of electrostatic attractive forces. This is confirmed by salt concentration and cross-linking-density dependent experiments. Scattering data are also analyzed in a refmed version of the Coulomb potential/MSA within the primitive model that show the existence of effective repulsive and attractive forces. The concentration dependent solution viscosity curves are well described by a modemode coupling approximation introduced by Hess and Klein. This formalism also allows the recalculation of the viscosity behavior from the light scattering curves, resulting in a quantitative agreement between measured and calculated values. Finally, the resulting picture is transferred to high precision measurements on linear polyelectrolytes of the same chemical composition, where direct comparison is expected to reveal the effects specific to linear structures. It is seen that the predominant effect is still intermolecular in nature, i.e. due to the interaction potential, but an effect due to chain stretching can also be identified. This effect is more pronounced for small polymers than for large polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schmitz, K. S. Macroions in Solution, VCH, Weinheim (1993)

    Google Scholar 

  2. Förster, S., Schmidt, M. (1995) Adv. Polym. Sci., 120, 53

    Google Scholar 

  3. Flory, P. J. (1992) Principles of Polymer Science, 15th Ed.; Cornell University Press, Cornell), p. 635

    Google Scholar 

  4. Elias, H. G. (1990) Makromoleküle, Hüthig & Wepf, Basel

    Google Scholar 

  5. Hess, W., Klein, R.: (1983) Adv. Phys. 32, 173

    Article  CAS  Google Scholar 

  6. Rabin, Y.: (1987) Phys. Rev. A 35, 3579

    Article  CAS  Google Scholar 

  7. Borsali, R., Vilgis, T. A., Benmouna, M. (1992) Macromolecules, 25, 5313

    Article  CAS  Google Scholar 

  8. Förster, S., Schmidt, M., Antonietti, M. (1992) J. Phys. Chem 96, 4008

    Article  Google Scholar 

  9. Skolnick, J., Fixman, M. (1977) Macromolecules 10, 944

    Article  CAS  Google Scholar 

  10. Odijk, T. (1977) J. Polym. Sci. Polym. Phys. Ed. 15, 477

    Article  CAS  Google Scholar 

  11. Schmidt, M. (1991) Macromolecules 24, 5361

    Article  CAS  Google Scholar 

  12. Langmuir, I. (1938) J. Chem. Phys. 6, 873.

    Article  CAS  Google Scholar 

  13. Kose, A., Ozaki, M., Takano, K., Kobashi, K., Hachisu, S.: J. Colloid Interface Sci. 1973, 44, 330.

    Article  CAS  Google Scholar 

  14. Ise, N., Okubo, T., Sugimura, M., Ito, K., Nolte, H. J. (1983) J. Chem. Phys. 78, 536.

    Article  CAS  Google Scholar 

  15. Ise, N., Ito, K., Okubo, T., Dosho, S., Sogami, I. (1985) J. Am. Chem. Soc. 107, 8074.

    Article  CAS  Google Scholar 

  16. Ise, N., Okubo, T., Ito, K., Dosho, S. (1985) J. Colloid Int. Sci. 103, 292.

    Article  CAS  Google Scholar 

  17. Ito, K., Nakamura, H., Ise, N. (1986) J. Chem. Phys. 85, 6143.

    Article  CAS  Google Scholar 

  18. Ito, K., Ise, N. (1987) J. Chem. Phys., 86, 6502.

    Article  CAS  Google Scholar 

  19. Ito, K., Okumura, H., Yoshida, H., Yoshihiro, U., Ise, N. (1988) Phys. Rev. B 38, 852.

    Article  Google Scholar 

  20. Ito, K., Yoshida, H., Ise, N. (1994) Science 263, 66.

    Article  CAS  Google Scholar 

  21. Yoshida, H., Ise, N., Hashimoto, T. (1995) Langmuir 11, 2853.

    Article  CAS  Google Scholar 

  22. Kesavamoorthy, R., Rajalakshimi, M., Rao, C. B. (1989) J. Phys. Condens. Matter 1, 7149.

    Article  Google Scholar 

  23. Sogami, I., Ise, N. (1984) J. Chem Phys. 81, 6320.

    Article  Google Scholar 

  24. Woodward, C. E. (1988) J. Chem Phys. 89, 5140.

    Article  CAS  Google Scholar 

  25. Overbeek, J. Th. G. (1987) J. Chem Phys. 87, 4406.

    Article  CAS  Google Scholar 

  26. Smalley, M. V. (1990) Mol. Phys. 71, 1251.

    Article  CAS  Google Scholar 

  27. Schmitz, K. S. (1996) Langmuir 12, 1407.

    Article  CAS  Google Scholar 

  28. Rouzina, I., Bloomfield, V. A.: J. Phys. Chem. 1996, 100, 9989.

    Google Scholar 

  29. Patey, G. N. (1996) Ber. Bunsenges. Phys. Chem. 100, 885.

    Article  CAS  Google Scholar 

  30. Belloni, L., Spalla, O. (1996) Ber. Bunsenges. Phys. Chem., 100, 905.

    Article  CAS  Google Scholar 

  31. Roij, R., Hansen, J. P. (1997) Phys. Rev. Lett. 19, 2082.

    Google Scholar 

  32. Gronbach-Jensen, N., Mashl, R. J., Bruinsma, R. F., Gelbart, W. M. (1997) Phys. Rev. Lett. 78, 2477.

    Article  Google Scholar 

  33. Hribar, B., Vlachy, V. (1997) J. Phys. Chem. 101, 3457.

    Article  CAS  Google Scholar 

  34. Ito, K., Yoshida, H., Ise, N. (1992) Chem Letters., 2081.

    Google Scholar 

  35. Ito, K., Yoshida, H., Ise, N. (1994) Science 263, 66.

    Article  CAS  Google Scholar 

  36. Ito, K., Kuramoto, K., Kitano, H. (1995) J. Am Chem. Soc. 117, 5005.

    Article  CAS  Google Scholar 

  37. Crocker, J. C., Grier, D. G. (1996) Phys. Rev. Lett. 77, 1897.

    Article  CAS  Google Scholar 

  38. Larsen, A. E., Grier, D. G. (1996) Phys. Rev Lett. 76, 3862.

    Article  CAS  Google Scholar 

  39. Larsen, A. E., Grier, D. G. (1997) Nature, 230, 385.

    Google Scholar 

  40. Okubo, T. (1987) J. Chem. Phys., 86, 2394 & 5182.

    Article  CAS  Google Scholar 

  41. Okubo, T.(1987) Colloid Polym. Sci. 265, 598.

    Google Scholar 

  42. Okubo, T.: (1988) J. Chem. Phys., 88, 2038 & 5182 & 6581.

    Google Scholar 

  43. Okubo, T. (1988) Colloid Polym. Sci. 266, 1042 & 1049.

    Article  CAS  Google Scholar 

  44. Schmitz, K. S. (1997) Langmuir 13, 5849.

    Article  CAS  Google Scholar 

  45. Antonietti, M., Bremser, W., Müschenborn, D., Rosenauer, C, Schupp, B., Schmidt, M. (1991) Macromolecules 24, 6636.

    Article  CAS  Google Scholar 

  46. Antonietti, M., Briel, A., Förster, S. (1996) J. Chem. Phys., 105, 7795.

    Article  CAS  Google Scholar 

  47. Antonietti, M., Basten, R., Lohmann, S. (1995) Macromol. Chem. Phys. 196, 441.

    Article  CAS  Google Scholar 

  48. Vink, H. (1970) Makromol. Chem. 131, 133

    Article  CAS  Google Scholar 

  49. Gröhn, F., Antonietti, M.: Macromolecules, submitted

    Google Scholar 

  50. Blum, L. (1975) Mol Phys. 30, 1529.

    Article  CAS  Google Scholar 

  51. Blum, L., Hoye, J. S. (1977) J. Chem. Phys. 77, 1428 & 1977, 81, 1311.

    Google Scholar 

  52. Nägele, G., Klein, R., Medina-Noyola, M. (1985) J. Chem. Phys. 83, 2560.

    Article  Google Scholar 

  53. Chu, X., Wasan, T.: (1996) J. Colloid Int. Sci., 184, 268.

    Article  CAS  Google Scholar 

  54. Salgi, P., Guerrin, J. F., Rajagopalan, R.: (1992) Colloid Polym. Sci. 270, 785.

    Article  CAS  Google Scholar 

  55. Salgi, P., Ragajopalan, R. (1993) Adv. Coll. Int. Sci., 43, 169.

    Article  CAS  Google Scholar 

  56. Härtl, W., Versmold, H (1983) Mol. Phys., 50, 815.

    Article  Google Scholar 

  57. Härtl, W., Versmold, H., Wittig, U. (1984) Ber. Bunsenges. Phys. Chem., 88, 1063.

    Google Scholar 

  58. Härtl, W., Versmold, H. (1988) J. Chem Phys. 88, 7157.

    Article  Google Scholar 

  59. Versmold, H., Wittig, U., Härtl, W. (1991) J. Chem Phys, 95, 9937.

    Article  CAS  Google Scholar 

  60. Härtl, W., Versmold, H., Zhang-Heider, X. (1991) Ber. Bunsenges. Phys. Chem., 95, 1105.

    Article  Google Scholar 

  61. Wagner, N. J., Krause, R., Rennie, A. R., Daguanno, B., Goodwin, J (1991) J. Chem. Phys, 95, 494.

    Article  CAS  Google Scholar 

  62. Ermi, B. D., Amis, E. J. (1997) Macromolecules, 30, 6937.

    Article  CAS  Google Scholar 

  63. Antonietti, M., Förster, S., Zisenis, M., Conrad, J (1995) Macromolecules 28, 2270

    Article  CAS  Google Scholar 

  64. Fuoss, R. M., Strauss, J.: 1948 J. Polym. Sci., 3, 246 & ibid. (1948), 3, 603 & (1948), ibid. 4, 96

    Article  CAS  Google Scholar 

  65. Russell, W. B., Saville, D. A., Schowalter W. R.: (1989) “Colloidal Dispersions”, Cambridge University Press, Cambridge

    Book  Google Scholar 

  66. Gröhn, F.: Doctoral Thesis, Potsdam (1998)

    Google Scholar 

  67. Nägele, G., Bergenholtz, J.:(1998) J. Chem. Phys., 108, 9893

    Article  Google Scholar 

  68. Nägele, G., Bergenholtz, J., Donth, J:(1999) J. Chem. Phys, 110, 7037

    Article  Google Scholar 

  69. Cohen, J., Priel, Z., Rabin, Y.(1988): J. Polym. Sci. Polym. Lett., 26, 397

    Article  Google Scholar 

  70. Cohen, J., Priel, Z., Rabin, Y.(1988) Polym. Commun. 29, 235

    CAS  Google Scholar 

  71. Cohen, J., Priel, Z., Rabin, Y.(1988) J. Chem. Phys., 88, 7111

    Article  CAS  Google Scholar 

  72. Cohen, J., Priel, Z.: (1989) Macromolecules, 22, 2356

    Article  CAS  Google Scholar 

  73. Vink, H.: (1987) J. Chem. Soc. Faraday Trans, 83, 801

    Article  CAS  Google Scholar 

  74. Okubo, T. (1989) J. Chem. Soc. Faraday Trans, 85, 455

    Article  CAS  Google Scholar 

  75. Okubo, T.(1990) J. Am. Chem. Soc., 112, 5420

    Article  CAS  Google Scholar 

  76. Cohen, J., Priel, Z.: (1990) J. Chem. Phys, 93, 9062

    Article  CAS  Google Scholar 

  77. Schnee, C., Schmidt, M.: (1994) Polym. Prep 35, 52

    CAS  Google Scholar 

  78. de Gennes, P. G: (1979). “Scaling Concepts in Polymer Physics”, Cornell University Press, Ithaca (NY)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Antonietti, M., Briel, A., Gröhn, F. (2002). Structure and Viscosity of Spherical Polyelectrolyte Microgels: A Model for the Polyelectrolyte Effect?. In: Borsali, R., Pecora, R. (eds) Structure and Dynamics of Polymer and Colloidal Systems. NATO Science Series, vol 568. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0442-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0442-8_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0502-2

  • Online ISBN: 978-94-010-0442-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics