Shear Thickening Effects in Concentrated Suspensions

  • Jan Mewis
Part of the NATO Science Series book series (ASIC, volume 568)

Abstract

The most frequently encountered emanation of non-Newtonian behavior in fluids is a decrease of the viscosity with increasing rate of strain, i.e. shear thinning. Although less common, the opposite effect, shear thickening or a viscosity increase with strain rate, can also occur in various kinds of fluids (for a recent review, see [1]). Concentrated suspensions constitute the best-known examples of such materials. Other systems that can display the same behavior include some polymer solutions, in particular those containing associative polymers, and surfactant solutions that form worm-like micelles. The present discussion is limited to suspensions.

Keywords

Clay Surfactant Migration Quartz Starch 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Van Egmond J.W. (1998) Current Opinion Colloid Interface Sci. 3, 322, 85–390Google Scholar
  2. 2.
    Brenner, H. (1974). Int J. Multiphase Flow 1, 195CrossRefGoogle Scholar
  3. 3.
    Mewis, J. (1979). J. Non-Newtonian Fluid Mech. 6, 1CrossRefGoogle Scholar
  4. 4.
    Reynolds, O. (1885). Phil. Mag. 20, 469CrossRefGoogle Scholar
  5. 5.
    Bauer, W.H. and Collins, E.A. (1967).in: Rheology, theory and Applications, F.R. Eirich, ed., vol. 4, 423Google Scholar
  6. 6.
    Metzner, A.B. and Whitlock, M.; (1958). Trans. Soc. Rheol. II, 239, 254Google Scholar
  7. 7.
    Barnes, H., (1989). J. Rheol. 33, 329CrossRefGoogle Scholar
  8. 8.
    D’Haene, P., (1992). Ph.D. thesis, K.U.LeuvenGoogle Scholar
  9. 9.
    Bender, J. and Wagner, N.J., (1996) J. Rheol. 40, 899CrossRefGoogle Scholar
  10. 10.
    Boersma, W.H. et al., (1991). J. Rheol. 35, 1093CrossRefGoogle Scholar
  11. 11.
    Ourieva, G. and Mewis, J., to be publishedGoogle Scholar
  12. 12.
    Frith, W.J. and Lips, A., (1995) Adv. Colloid Interface Sci. 61, 161CrossRefGoogle Scholar
  13. 13.
    Patton, T.C.: (1979) Paint Flow and Pigment Dispersion, 2nd ed., J. Wiley, N.Y., p. 372Google Scholar
  14. 14.
    Helber, et al., (1990) J. Sound & Vibration 138, 47CrossRefGoogle Scholar
  15. 15.
    Laun, H.M. et al., (1991) J. Rheol. 35, 999CrossRefGoogle Scholar
  16. 16.
    Kanno, T. et al., (1976) J. Soc. Rheol. Japan 4, 170Google Scholar
  17. 17.
    Strivens, T.A., (1976) J. Collloid Interface Sci. 57, 476CrossRefGoogle Scholar
  18. 18.
    Chow, M.K. and Zukoski C.F., (1995) J. Rheol. 39, 15CrossRefGoogle Scholar
  19. 19.
    Patzold, R., (1980) Rheol. Acta 19, 322CrossRefGoogle Scholar
  20. 20.
    Raghavan, S.R. and Khan, S.A., (1997) J. Colloid Interface Sci. 185, 57CrossRefGoogle Scholar
  21. 21.
    Boersma, W.H. et al., (1992) J. Colloid Interface Sci. 149, 10CrossRefGoogle Scholar
  22. 22.
    Hoffman, R.L., (1974) J. Colloid Interface Sci. 46, 491; (1982) Adv. Colloid Interface Sci. 17, 161CrossRefGoogle Scholar
  23. 23.
    Chaffey, C.E. and Wagstaff, I., (1977) J. Colloid Interface Sci. 59, 63CrossRefGoogle Scholar
  24. 24.
    Frith, W.J. et al., (1996) J. Rheol. 40, 531CrossRefGoogle Scholar
  25. 25.
    Eastwood, A. and Barnes, H.A., (1975) Rheol. Acta 14, 795CrossRefGoogle Scholar
  26. 26.
    Boersma, W.H. et al, (1990) A.I.Ch.E.Jl. 36, 321CrossRefGoogle Scholar
  27. 27.
    Clarke, B., (1967) Trans. I. Chem. E. 45, 251Google Scholar
  28. 28.
    Jansma, J.B. and Qutubuddin, (1995) J. Rheol. 39, 161CrossRefGoogle Scholar
  29. 29.
    Laun, H.M., (1984) Angew. Makromol. Chem. 123/124, 335CrossRefGoogle Scholar
  30. 30.
    Ourieva, G., (1999) Ph.D. thesis, K.U.LeuvenGoogle Scholar
  31. 31.
    Biebaut, G., (1999) Ph.D. thesis, K.U.LeuvenGoogle Scholar
  32. 32.
    Hoffman, R.L., (1972) Trans. Soc. Rheol., 16, 155CrossRefGoogle Scholar
  33. 33.
    Laun, H.M. et al., (1992) J. Rheol. 36, 743CrossRefGoogle Scholar
  34. 34.
    Fagan, M.E. and Zukoski, C.F., (1997) J. Rheol. 41, 373CrossRefGoogle Scholar
  35. 35.
    Dratler, D.I., Schowalter, W.R. and Hoffman, R.L., (1997) J. Fluid Mech. 353, 1CrossRefGoogle Scholar
  36. 36.
    Kaldasch, J. et al., (1998) J. Rheol. 42, 1285CrossRefGoogle Scholar
  37. 37.
    D’Haene, et al., (1993) J. Colloid Interface Sci. 156, 350CrossRefGoogle Scholar
  38. 38.
    Phung, T.N. et al., (1996) J. Fluid Mech. 313, 181CrossRefGoogle Scholar
  39. 39.
    Watanabe, H. et al., (1998) Rheol. Acta 37, 1CrossRefGoogle Scholar
  40. 40.
    Bender, J.W. and Wagner, N.J., (1995) J. Colloid Interface Sci. 172, 171CrossRefGoogle Scholar
  41. 41.
    Ball, R.C. and Melrose, J.R., (1995) Adv. Colloid Interface Sci. 59, 19CrossRefGoogle Scholar
  42. 42.
    Melrose, J.R. et al., (1996) Phys. Rev. Lett. 77, 4660CrossRefGoogle Scholar
  43. 43.
    Farr, R.S. et al., (1997) Phys. Rev. E 55, 7203CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • Jan Mewis
    • 1
  1. 1.Dept. Chemical EngineeringK.U.LeuvenLeuvenBelgium

Personalised recommendations