Making Molecules From Laser-Cooled Atoms

Part of the NATO Science Series book series (NAII, volume 51)


We report on recent methods to produce translationally cold molecules starting from lasercooled atoms. This overcomes the limitation of laser cooling tecniques, that cannot be easily applied to molecules. In particular we report on the observation of translationally cold Rb2 groundstate molecules produced in a magneto-optical trap for rubidium atoms. Cold dimers, formed either after spontaneous decay of photoassociated molecules or by three-body recombination, are detected after pulsed-laser photoionization into ions. Isotopic differences in cold molecules production are discussed. The cold molecules detection allows photoassociation spectroscopy to be performed. Photoassociation spectra of the rubidium attractive molecular state below the 5S 1/2 + 5P 3/2 dissociation limit are reported.


Free Atom Spontaneous Decay Cold Molecule Repumping Laser Large Internuclear Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chu, S. (1998) The manipulation of neutral particles, Rev. Mod. Phys. 70, 685–706; Cohen-Tannoudji, C. (1998) Manipulating atoms with photons, ibid. 70, 707-720; Phillips, W.D. (1998) Laser cooling and trapping of neutral atoms, ibid. 70, 721-741.ADSCrossRefGoogle Scholar
  2. 2.
    Thorsheim, H.R., Weiner, J., and Julienne, P.S. (1987) Laser-Induced Photoassociation of Ultracold Sodium Atoms, Phys. Rev. Lett. 58, 2420–2423.ADSCrossRefGoogle Scholar
  3. 3.
    Fioretti, A., Comparat, D., Crubellier, A., Dulieu, O., Masnou-Seeuws, F., and Pullet, P. (1998) Formation of cold Cs2 molecules through photoassociation, Phys. Rev. Lett. 80, 4402–4405.ADSCrossRefGoogle Scholar
  4. 4.
    Nikolov, A.N., Eyler, E.E., Wang, X.T., Wang, H., Stwalley, W.C., and Gould, P.L. (1999) Observation of ultracold ground-state potassium molecules, Phys. Rev. Lett. 82, 703–706.ADSCrossRefGoogle Scholar
  5. 5.
    Takekoshi, T., Patterson, B.M., Knize, R.J. (1998) Observation of optically trapped cold cesium molecules, Phys. Rev. Lett. 81, 5105–5108.ADSCrossRefGoogle Scholar
  6. 6.
    Nikolov, A.N., Ensher, J.R., Byler, E.E., Wang, H., Stwalley, W.C., and Gould, P.L. (2000) Efficient production of Ground-state Potassium Molecules at sub-mK Temperatures by Two-Step Photoassociation, Phys. Rev. Lett. 84, 246–249.ADSCrossRefGoogle Scholar
  7. 7.
    Weinstein, J.D., de Carvalho, R., Guillet, T., Friedrich, B., and Doyle, J.M. (1998) Magnetic trapping of calcium monohydride molecules at millikelvin temperatures, Nature 395, 148–150.ADSCrossRefGoogle Scholar
  8. 8.
    Bethlem, H.L., Berden, G., and Meijer, G. (1999) Decelerating neutral dipolar molecules, Phys. Rev. Lett. 83, 1558–1561.ADSCrossRefGoogle Scholar
  9. 9.
    Gabbanini, C., Fioretti, A., Lucchesini, A., Gozzini, S., and Mazzoni, M. (2000) Cold Rubidium Molecules Formed in a Magneto-Optical Trap, Phys. Rev. Lett. 84, 2814–2817.ADSCrossRefGoogle Scholar
  10. 10.
    Lett, P.D, Julienne, P.S., and Phillips, W.D. (1995) Photoassociative spectroscopy of laser cooled atoms, Ann. Rev. Phys. Chem. 46, 423–452.ADSCrossRefGoogle Scholar
  11. 11.
    Weiner, J., Bagnato, V.S., Zilio, S., and Julienne, P.S. (1999) Experiments and theory in cold and ultracold collisions, Rev. Mod. Phys. 71, 1–86.ADSCrossRefGoogle Scholar
  12. 12.
    Stwalley, W.C., and Wang, H. (1999) Photoassociation of ultracold atoms: a new spectroscopic technique, J. Mol Spectr. 195, 194–228.ADSCrossRefGoogle Scholar
  13. 13.
    Pillet, P., Crubelleir, A., Bleton, A., Dulieu, O., Nosbaum, P., Mourachko, I., Masnou-Seeuws, F. (1997) Photoassociation in a gas of cold alkali atoms: I. Perturbative quantum approach, J. Phys.B 30, 2801–2820.ADSCrossRefGoogle Scholar
  14. 14.
    Drag, C., Laburthe-Toira, B., T-Jampers, B, Comparat, D., Allegrini, M, Crubellier, A., and Pullet, P. (2000) Photoassociative spectroscopy as a self-sufficient tool for the determination of the Cs triplet scattering length Phys. Rev. Lett. 85, 1408–1411.ADSCrossRefGoogle Scholar
  15. 15.
    Stwalley, W.C., Uang, Y.H., and Pichler, G. (1978) Pure long-range molecules, Phys. Rev. Lett. 41,1164–1167.ADSCrossRefGoogle Scholar
  16. 16.
    Fioretti, A., Comparat, D., Drag, C., Amiot, C., Dulieu, O., Masnou-Seeuws, F. and Pullet, P. (1999) Photoassociative spectroscopy of the long-range state, Eur. Phys. J. D 5, 389–403.ADSCrossRefGoogle Scholar
  17. 17.
    Comparat, D., Drag, C., Fioretti, A., Dulieu, O., and Pullet. P. (1999) Photoassociative spectroscopy and formation of cold molecules in cold cesium vapor: trap-loss spectrum versus ion spectrum, J. Mol. Spectr. 195, 229.ADSCrossRefGoogle Scholar
  18. 18.
    Drag, C., Laburthe-Tolra, B., Dulieu, O., Comparat, D., Vatasescu, M., Boussen, S., Guibal, S., Crubellier, A. and Pullet, P. (2000) Experimental versus theoretical rates for photoassociation and for the formation of ultracold molecules, IEEE J. Quantum El., in pressGoogle Scholar
  19. 19.
    Comparat, D., Drag, C., Laburthe-Tolra, B. Fioretti, A., Pullet, P., Crubellier, A., Dulieu, O., and Masnou-Seeuws, F. (2000) Formation of cold Cs2 ground state molecules through photoassociation in the lu pure long-range state, Eur. Phys. J. D 11, 59–71.ADSCrossRefGoogle Scholar
  20. 20.
    Dion, C.M., Drag, C., Dulieu, O., Laburthe-Toira, B., Masnou-Seeuws, F., and Pillet, P. (2000) Resonant coupling in the formation of ultracold ground state molecules via photoassociation, submitted.Google Scholar
  21. 21.
    Pichler, G., Milosevic, S., Veza, D. and Beuc, R. (1983) Diffuse bands in the visible absorption spectra of dense alkali vapours, J. Phys. B 16, 4619–4631.ADSCrossRefGoogle Scholar
  22. 22.
    Anderson, M.H., Ensher, J.R., Matthews, M.R., Wieman, C.E. and Cornell, E.A. (1995) Obsevation of Bose-Einstein condensation in a dilute atomic vapor, Science 269, 198–201.ADSCrossRefGoogle Scholar
  23. 23.
    Boesten, H.M.J.M., Tsai, C.C., Gardner, J.R., Heinzen, D.J., and Verhaar, B.J.(1997) Observation of a shape resonance in the collision of two cold 87Rb atoms, Phys. Rev. A 55, 636–641; Roberts, J.L., Claussen, N.R., Burke, J.P., Greene, C.H., Cornell, E.A., and Wieman, C.E. (1998) Resonant magnetic field control of elastic scattering in cold 85Rb, Phys. Rev. Lett. 81, 5109-5112.ADSCrossRefGoogle Scholar
  24. 24.
    Clime, R.A., Miller, J.D., and Heinzen, D.J. (1994) Study of Rb2 long-range states by highresolution photoassociative spectroscopy, Phys. Rev. Lett. 73, 632–635.ADSCrossRefGoogle Scholar
  25. 25.
    Lambrecht, A., Giacobino, E. and Reynaud, S. (1996) Atomic number fluctuation in a falling cold atomic cloud, Quantum Semiclass. opt. 8, 457–472.ADSCrossRefGoogle Scholar
  26. 26.
    Amiot, C. (1995) Analyis of spectra obtained by cold-atom photoassociation: the Rb 2 1g and electronic states up to 100 ÅChem. Phys. Lett. 241, 133–139.ADSCrossRefGoogle Scholar
  27. 27.
    Fioretti, A., Amiot, C., Dion, C.M., Dulieu, 0., Mazzoni, M., Smirne, G., and Gabbanini, C (2000) Spectroscopy of the state of 87Rb2 by cold molecule detection, submitted.Google Scholar
  28. 28.
    Takekoshi, T., Patterson, B.M. and Knize, R.J. (1999) Observation of cold groundstate cesium molecules produced in a magneto-optical trap, Phys. Rev. A 59, R5–R7.ADSCrossRefGoogle Scholar
  29. 29.
    Wallace, C.D., Dinneen, T.P., Tan, K.N., Grove, T.T., and Gould, P.L. (1992) Isotopic difference in trap loss collisions of laser cooled rubidium atoms, Phys. Rev. Lett. 69, 897–900ADSCrossRefGoogle Scholar
  30. Walker.
    Walker, T. and Pritchard, D. (1993) Effects of hyperfine structure on alkali trap-loss collisions, Laser Physics 4, 1085–1092.Google Scholar
  31. 30.
    Moerdijk, A.J., Boesten, H.M.J.M., and Verhaar, B.J. (1996) Decay of trapped ultracold alkali atoms by recombination, Phys. Rev. A 53, 916–920.ADSCrossRefGoogle Scholar
  32. 31.
    Esry, B.D., Greene, C.H., and Burke, J.P. (1999) Recombination of three atoms in the ultracold limit, Phys. Rev. Lett. 83, 1751–1754.ADSCrossRefGoogle Scholar
  33. 32.
    Soding, J., Gury-Odelin, D., Desbiolles, P., Chevy, F., Inamori, H., and Dalibard, J. (1999) Three-body decay of a rubidium Bose-Einstein condensate, Appl. Phys. B 69, 257–261.ADSCrossRefGoogle Scholar
  34. 33.
    Wynar, R., Freeland, R.S., Han, D.J., Ryu, C., and Heinzen, D.J. (2000) Molecules in a Bose-Einstein condensate, Science 287, 1016–1019.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  1. 1.Istituto di Fisica Atomica e Molecolare del C.N.R.GhezzanoItaly
  2. 2.Unità INFM, Dip. di Fisica, Università di PisaPisaItaly

Personalised recommendations