“White-Light” Laser Cooling and Trapping

Part of the NATO Science Series book series (NAII, volume 51)


The basic ideas of the “white-light” laser cooling and trapping are discussed and the applications to atom and ion cooling and trapping are presented. “White-light” cooling allows one to maximise at the same time both the velocity capture range and the cooling rate. This gives the possibility to improve the trapping collection efficiency, to reach lower temperatures in presence of strong heating processes, to cool and trap atoms through metastable levels. The definition and the construction of “white” laser sources is presented and the improvement achieved with respect to the use of single mode lasers is reported in the case of fast ions confined in a storage ring and in magneto-optical trapping of neutral atoms.


Atomic Beam Laser Cool Frequency Comb Trap Atom Single Mode Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See for example: Metcalf, H. J., and van der Straten, P. (1999) Laser cooling and trapping, Springer-Verlag, New York.CrossRefGoogle Scholar
  2. 2.
    See for example: Dalfovo, F., Giorgini, S., Pitaevskii, Lev P., and Stringari, S. (1999) Theory of Bose-Einstein condensation in trapped gases, Reviews of Modern Physics 71, pp. 463–512.ADSCrossRefGoogle Scholar
  3. 3.
    Hangst, J.S., Kristensen, M., Nielsen, J.N., Poulsen, O., Schiffer, J.P., and Shi, P. (1991) Laser cooling of a stored ion beam to 1mK, Phys. Rev. Lett. 67, pp 1238–1241.ADSCrossRefGoogle Scholar
  4. 4.
    Hangst, J.S., Nielsen, J.S., Poulsen, O., Shi, P., and Schiffer, J.P. (1995) Laser cooling of a bunched beam in a synchrotron storage ring, Phys. Rev. Lett. 74, pp. 432–4435.Google Scholar
  5. 5.
    Atutov, S.N., Calabrese, R., Grimm, R., Guidi, V., Lauer, I., Lenisa, P., Luger, V., Mariotti, E., Moi, L., Peters, A., Schramm, U., Schwalm, D., and Stossel, M. (1998) White-light laser cooling of a stored ion beam, Phys. Rev. Lett. 80, pp. 2129–2132.ADSCrossRefGoogle Scholar
  6. 6.
    Anderson, B.P., and Kasevich, M.A. (1994) Enhanced loading of a magneto-optic trap from an atomic beam, Physical Review A 50, pp. R3581–R3584.ADSCrossRefGoogle Scholar
  7. 7.
    See for example: Sprouse, G.D., and Orozco, L. A. (1997) Laser trapping of radioactive atoms, Annu. Rev. Nucl. Part. Sci. 47, pp. 429–461.ADSCrossRefGoogle Scholar
  8. 8.
    Katori, H., Ido, T., Isoya, Y, and Kuwata-Gonokami, M. (1999) Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature, Phys. Rev. Lett. 82, pp. 1116–1119.ADSCrossRefGoogle Scholar
  9. 9.
    Hansch, T.W. and Schawlow, A.L. (1975) Opt. Commun. 13, 68.ADSCrossRefGoogle Scholar
  10. 10.
    Littler, I.C.M., Balle, S., and Bergmann, K. (1992) The cw modeless laser: spectral control, performance data and build-up dynamics, Opt. Commun. 88, pp. 514–522.ADSCrossRefGoogle Scholar
  11. 11.
    Moi, L. (1984) Application of a very long cavity laser to atom slowing down and optical pumping, Opt. Commun. 50, 349.ADSCrossRefGoogle Scholar
  12. 12.
    Liang, J., Moi, L., and Fabre, C., (1984) The ‘lamp-laser’: realization of a very long cavity dye laser, Opt. Commun. 52, 131.ADSCrossRefGoogle Scholar
  13. 13.
    Gozzini, S., Mariotti, E., Gabbanini, C., Lucchesini, A., Marinelli, C., and Moi, L. (1992) Atom cooling by white light, Appl. Phys. B 54, pp. 428–433.ADSCrossRefGoogle Scholar
  14. 14.
    Xu, J.H., and Moi, L. (1988) Resonance radiation pressure on an atomic vapor, Opt. Commun. 67, pp. 282–28ADSCrossRefGoogle Scholar
  15. 15.
    Gabbanini, C., Xu, J.H., Gozzini, S., and Moi, L. (1988) Light induced drift by nonmonochromatic laser radiation, Europhysics Lett. 7, 505.ADSCrossRefGoogle Scholar
  16. 16.
    Strohmeier, P., Kersebom, T., Kruger, E., Nolle, H., Steuter, B., Schmand, J., and Andra, J. (1989) Na-atom beam deceleration by a mode-locked laser, Opt. Commun. 73, pp. 451–454.ADSCrossRefGoogle Scholar
  17. 17.
    Zhu, M., Oates, C.W., and Hall, J.L. (1991) Continuous high-flux monovelocity atomic-beam based on a broadband laser-cooling technique, Phys. Rev. Lett. 67, pp. 46–49.ADSCrossRefGoogle Scholar
  18. 18.
    Hoffnagle, J. (1988) Proposal for continuous white-light cooling of an atomic beam, Opt. Lett. 13, 10ADSCrossRefGoogle Scholar
  19. 19.
    Jessen, and Kristensen, (1992) Appl Optics 31, 4911.ADSCrossRefGoogle Scholar
  20. 20.
    Littler, I.C.M., and Bergmann, K. (1992) Generation of multi-frequency laser emission using an active frequency shifted feedback cavity, Opt. Commun. 88, pp. 523–530.ADSCrossRefGoogle Scholar
  21. 21.
    Atutov, S.N., Bonazzi, F., Calabrese, R., Guidi, V., Lenisa, P., Petruio, S., Mariotti, E., and Moi, L. (1996) Generation of a frequency comb with a sharp edge of adjustable intensity and frequency, Opt. Commun. 132, 269.ADSCrossRefGoogle Scholar
  22. 22.
    Atutov, S.N., Baldini, W., Biancalana, V., Calabrese, R., Guidi, V., Lenisa, P., Mai, B., Mariotti, E., Moi, L., and Tomassetti, L. (2001) Achromatic device for generation of a broadband frequency spectrum with high frequency stability and sharp termination, Journal of the Optical Society of America B 18, pp. 335–339.ADSCrossRefGoogle Scholar
  23. 23.
    Petrich, W., Grieser, M., Grimm, R., Gruber, A., Habs, D., Miesner, H.J., Schwalm, D., Wanner, B., Wernoe, H., Wolf, A., Grieser, R., Huber, G., Klein, R., Kulh, T., Neumann, R., and Schroder, S. (1993) Laser cooling of stored high-velocity ions by means of the spontaneous force, Phys. Rev. A 48, pp. 2127–2144.ADSCrossRefGoogle Scholar
  24. 24.
    Raab, E.L., Prentiss, M., Cable, A., Chu, S., and Pritchard, D.E. (1987) Trapping of neutral sodium atoms with radiation pressure, Phys. Rev. Lett. 59, pp. 2631–2634.ADSCrossRefGoogle Scholar
  25. 25.
    Atutov, S.N., Biancalana, V., Burchianti, A., Calabrese, R., Gozzini, S., Guidi, V., Lenisa, P., Marinelli, C., Mariotti, E., Moi, L., Nasyrov, K., and Pod’yachevâ S. (2001) Sodium MOT collection efficiency as a function of the trapping and repumping laser frequencies and intensities, Eur. Phys. J. D 13, pp. 71–82.ADSCrossRefGoogle Scholar
  26. 26.
    Lu, Z.-T, Corwin, K.L., Vogel, K.R., Wieman, C.E., Dinneen, T.P., Maddi, J., and Gould, H. (1997) Efficient collection of 221Fr into a vapor cell magneto-optical trap, Phys. Rev. Lett. 79, pp. 994–997.ADSCrossRefGoogle Scholar
  27. 27.
    Meucci, M., Mariotti, E., Bicchi, P., Marinelli, C., and Moi, L. (1994) Light-induced atom desorption, Europhysics Lett. 25, 639.ADSCrossRefGoogle Scholar
  28. 28.
    Gozzini, A., Mango, F., Xu, J.H., Alzetta, G., Maccarrone, F., and Bernheim, R.A. (1993) Light-induced ejection of alkali atoms in polysiloxane coated cells, Nuovo Cimento D 15, 709.ADSCrossRefGoogle Scholar
  29. 29.
    Atutov, S.N., Baldini, W., Biancalana, V., Calabrese, R., Guidi, V., Lenisa, P., Mai, B., Mariotti, E., Moi, L., and Tomassetti, L. Fast loading of a magneto-optical trap using light-induced atomic desorption, in preparation.Google Scholar
  30. 30.
    Kuwamoto, T., Honda, K., Takahashi, Y., and Yabuzaki, T. (1999) Magneto-optical trapping of Yb atoms using an intercombination transition, Phys. Rev. A 60, pp. R745–R748.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  1. 1.Institute of Automation and ElectrometryRussia
  2. 2.Dipartimento di Fisica and INFNUniversità di FerraraFerraraItaly
  3. 3.INFM UdR Siena and Dipartimento di Fisica Università di SienaSienaItaly

Personalised recommendations