Advertisement

Optical and Magnetic Trapping of Fermionic Potassium

Chapter
  • 214 Downloads
Part of the NATO Science Series book series (NAII, volume 51)

Abstract

Ultracold fermionic potassium atoms are attractive candidates for experimental studies on a dilute Fermi gas, including the possible formation of a superfluid phase of paired fermions. We present here an overview of the peculiarities of potassium with respect to optical and magnetic trapping, and to cooling techniques, following the guidelines of the experiments running at LENS, in Firenze.

Keywords

Evaporative Cool Magnetic Trap Optical Trap Feshbach Resonance Trap Depth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brunn, G.M., and Burnett, K. (1998) Interacting Fermi gas in a harmonic trap, Phys. Rev. A 58, 2427–243ADSCrossRefGoogle Scholar
  2. 2.
    Ferrari, G. (1999) Collisional relaxation in a fermionic gas, Phys. Rev. A 59, R4125.ADSCrossRefGoogle Scholar
  3. 3.
    De Marco, B. and Jin, D.S. (1998) Exploring a quantum degenerate gas of fermionic atoms, Phys. Rev. A 58, R4267–R4270.ADSCrossRefGoogle Scholar
  4. 4.
    Stoof, H.T.C., and Houbiers, M. (1999) Condensed matter physics with trapped atomic Fermi gases in M. Inguscio, S. Stringari, and C. W. Wieman (eds.), Proceedings of the International School of physics Enrico Fermi, Course CXL, 1OS Press, pp. 537–553.Google Scholar
  5. 5.
    Mewes, M.-O., Ferrari, G., Schreck, F., Sinatra, A., and Salomon, C. (1999) Simultaneous magneto-optical trapping of two lithium isotopes Phys. Rev. A 61, R011403.ADSCrossRefGoogle Scholar
  6. 6.
    OŠHara, K.M., Granade, S.R., Gehm, M.E., Savard, T.A., Bali, S., Freed, C., and Thomas, J.E. (1999) Ultrastable CO2 laser trapping of lithium fermions, Phys. Rev. Lett. 82, 4204–4207.ADSCrossRefGoogle Scholar
  7. 7.
    See the contribution by R. Grimm to this School.Google Scholar
  8. 8.
    Myatt, C.J., Burt, E.A., Ghrist, R.W., Cornell, E.A., and Wieman, C.E. (1997) Production of two overlapping Bose-Einstein condensates by symphatetic cooling, Phys. Rev. Lett. 78, 586–589.ADSCrossRefGoogle Scholar
  9. 9.
    Ido, T., Isoya, Y., and Katori, H. (2000) Optical-dipole trapping of Sr atoms at high phasespace density, Phys. Rev. A 61, 061403.ADSCrossRefGoogle Scholar
  10. 10.
    DeMarco, B., Rohner, H., Jin, D.S. (1999) Onset of Fermi degeneracy in a trapped atomic gas, Science 258, 1703–1706.CrossRefGoogle Scholar
  11. 11.
    Bohn, J. (1999) Cooper Pairing in Ultracold 40K Using Feshbach Resonances, Phys. Rev. A 61, 05340ADSCrossRefGoogle Scholar
  12. 12.
    Fort, C., Bambini, A., Cacciapuoti, L., Cataliotti, F.S., Prevedelli, M., Tino, G.M., and Inguscio, M. (1998) Cooling mechanism in potassium magneto-optical traps, Eur. Phys. J. D 3, 113–118.ADSCrossRefGoogle Scholar
  13. 13.
    Cataliotti, F.S., Cornell, E.A., Fort, C., Inguscio, M., Main, F., Prevedelli, M., Ricci, L., and Tino, G.M. (1998) Magneto-optical trapping of Fermionic potassium atoms, Phys. Rev. A 57, 1136–1138.ADSCrossRefGoogle Scholar
  14. 14.
    DeMarco, B., Rohner, H., Jin, D. S. (1999) An enriched 40K source for fermionic atom studies, Rev. Sci. Instrum. 70, 1967–1970.ADSCrossRefGoogle Scholar
  15. 15.
    Modugno, G., Benko, C., Hannaford, P., Roati, G., and Inguscio, M. (1999) Sub-Doppler laser cooling of fermionic 40K potassium, Phys. Rev. A 60, R.3373–R.3376.ADSCrossRefGoogle Scholar
  16. 16.
    Heinzen, D.J. (1999) Ultracoldatomic interactions in M. Inguscio, S. Stringari, and C.W. Wieman (eds.), Proceedings of the International School of physics Enrico Fermi, Course CXL, 1OS Press, pp. 351–390.Google Scholar
  17. 17.
    Bohn, J.L., Burke, J.P., Greene, C.H., Wang, H., Gould, P.L., and Stwalley, W.C. (1999) Collisional properties of ultracold potassium: consequences for degenerate Bose and Fermi gases, Phys. Rev. A 59, 3360–3664.ADSCrossRefGoogle Scholar
  18. 18.
    DeMarco, B., Bohn, J.L., Burke, J.R, Holland, M., and Jin, D.S., (1999) Measurement of p-wave treshold law using evaporatively cooled fermionic atoms, Phys. Rev. Lett. 82, 4208–4211.ADSCrossRefGoogle Scholar
  19. 19.
    Ketterle, W., and Van Druten, N.J. (1996) Evaporative cooling of trapped atoms, Adv. At. Mol. Opt. Phys. 37, 181.ADSCrossRefGoogle Scholar
  20. 20.
    Houbiers, M., Ferwerda, R., Stoof, H.T.C., McAlexander, W.I., Sackett, C.A., and Hulet, R.G. (1997) Superfluid state of atomic 6Li in a magnetic trap, Phys. Rev. A 56, 4864–4878.ADSCrossRefGoogle Scholar
  21. 21.
    Grimm, R., Weidemüller, M., and Ovchinikov, Y.B. (2000) Optical dipole traps for neutral atoms, Adv. At. Mol. Opt. Phys. 42, 95.ADSCrossRefGoogle Scholar
  22. 22.
    Roati, G., Jastrzebsky, W., Simoni, A., Modugno, G., and Inguscio, M., (in press) Optical trapping of fermionic potassium for collisional studies, e-print: physics/0010065.Google Scholar
  23. 23.
    Vuletic, V., Chin, C., Kerman, A.J., and Chu, S. (1998) Degenerate Raman sideband cooling of trapped cesium atoms at very high atomic densities, Phys. Rev. Lett. 81, 5768–5771.ADSCrossRefGoogle Scholar
  24. 24.
    Corwin, K.L., Kuppens, S.J.M., Cho, D., and Wieman, G.E. (1999) Spin-polarized atoms in a circularly polarized optical dipole trap, Phys. Rev. Lett. 83, 1311–1314, 1999.ADSCrossRefGoogle Scholar
  25. 25.
    Prevedelli, M., Cataliotti, F.S., Cornell, E.A., Ensher, J.R., Fort, C., Ricci, L., Tino, G.M., and Inguscio, M. (1999) Trapping and cooling of potassium isotopes in a double-magneto-opticaltrap apparatus, Phys. Rev. A 59, 886–888.ADSCrossRefGoogle Scholar
  26. 26.
    Fort, C. (2000) Experiments with potassium isotopesin S. Martelluci, A. N. Chester, A. Aspect, M. Inguscio (eds.), Proceedings of the 27th Course International School of Quantum Electronics on Bose-Einstein Condensates and Atom Lasers, Kluwer Academic/Plenum Publishers, pp. 291–300.Google Scholar
  27. 27.
    Butts, D.A., and Rokhsar, D.S. (1997) Trapped Fermi gases, Phys. Rev. A 55, 4346–4350.ADSCrossRefGoogle Scholar
  28. 28.
    Holland, M.J., DeMarco, B., and Jin, D.S. (2000) Evaporative cooling of a two-component degenerate Fermi gas, Phys. Rev. A 61, 053610.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  1. 1.European Laboratory for Non-linear Spectroscopy (LENS)Università di FirenzeFirenzeItaly
  2. 2.LENS and Dipartimento di FisicaUniversit/‘a di TrentoPovo (Tn)Italy

Personalised recommendations