Skip to main content

Optical and Magnetic Trapping of Fermionic Potassium

  • Chapter
Trapped Particles and Fundamental Physics

Part of the book series: NATO Science Series ((NAII,volume 51))

  • 279 Accesses

Abstract

Ultracold fermionic potassium atoms are attractive candidates for experimental studies on a dilute Fermi gas, including the possible formation of a superfluid phase of paired fermions. We present here an overview of the peculiarities of potassium with respect to optical and magnetic trapping, and to cooling techniques, following the guidelines of the experiments running at LENS, in Firenze.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brunn, G.M., and Burnett, K. (1998) Interacting Fermi gas in a harmonic trap, Phys. Rev. A 58, 2427–243

    Article  ADS  Google Scholar 

  2. Ferrari, G. (1999) Collisional relaxation in a fermionic gas, Phys. Rev. A 59, R4125.

    Article  ADS  Google Scholar 

  3. De Marco, B. and Jin, D.S. (1998) Exploring a quantum degenerate gas of fermionic atoms, Phys. Rev. A 58, R4267–R4270.

    Article  ADS  Google Scholar 

  4. Stoof, H.T.C., and Houbiers, M. (1999) Condensed matter physics with trapped atomic Fermi gases in M. Inguscio, S. Stringari, and C. W. Wieman (eds.), Proceedings of the International School of physics Enrico Fermi, Course CXL, 1OS Press, pp. 537–553.

    Google Scholar 

  5. Mewes, M.-O., Ferrari, G., Schreck, F., Sinatra, A., and Salomon, C. (1999) Simultaneous magneto-optical trapping of two lithium isotopes Phys. Rev. A 61, R011403.

    Article  ADS  Google Scholar 

  6. OŠHara, K.M., Granade, S.R., Gehm, M.E., Savard, T.A., Bali, S., Freed, C., and Thomas, J.E. (1999) Ultrastable CO2 laser trapping of lithium fermions, Phys. Rev. Lett. 82, 4204–4207.

    Article  ADS  Google Scholar 

  7. See the contribution by R. Grimm to this School.

    Google Scholar 

  8. Myatt, C.J., Burt, E.A., Ghrist, R.W., Cornell, E.A., and Wieman, C.E. (1997) Production of two overlapping Bose-Einstein condensates by symphatetic cooling, Phys. Rev. Lett. 78, 586–589.

    Article  ADS  Google Scholar 

  9. Ido, T., Isoya, Y., and Katori, H. (2000) Optical-dipole trapping of Sr atoms at high phasespace density, Phys. Rev. A 61, 061403.

    Article  ADS  Google Scholar 

  10. DeMarco, B., Rohner, H., Jin, D.S. (1999) Onset of Fermi degeneracy in a trapped atomic gas, Science 258, 1703–1706.

    Article  Google Scholar 

  11. Bohn, J. (1999) Cooper Pairing in Ultracold 40K Using Feshbach Resonances, Phys. Rev. A 61, 05340

    Article  ADS  Google Scholar 

  12. Fort, C., Bambini, A., Cacciapuoti, L., Cataliotti, F.S., Prevedelli, M., Tino, G.M., and Inguscio, M. (1998) Cooling mechanism in potassium magneto-optical traps, Eur. Phys. J. D 3, 113–118.

    Article  ADS  Google Scholar 

  13. Cataliotti, F.S., Cornell, E.A., Fort, C., Inguscio, M., Main, F., Prevedelli, M., Ricci, L., and Tino, G.M. (1998) Magneto-optical trapping of Fermionic potassium atoms, Phys. Rev. A 57, 1136–1138.

    Article  ADS  Google Scholar 

  14. DeMarco, B., Rohner, H., Jin, D. S. (1999) An enriched 40K source for fermionic atom studies, Rev. Sci. Instrum. 70, 1967–1970.

    Article  ADS  Google Scholar 

  15. Modugno, G., Benko, C., Hannaford, P., Roati, G., and Inguscio, M. (1999) Sub-Doppler laser cooling of fermionic 40K potassium, Phys. Rev. A 60, R.3373–R.3376.

    Article  ADS  Google Scholar 

  16. Heinzen, D.J. (1999) Ultracoldatomic interactions in M. Inguscio, S. Stringari, and C.W. Wieman (eds.), Proceedings of the International School of physics Enrico Fermi, Course CXL, 1OS Press, pp. 351–390.

    Google Scholar 

  17. Bohn, J.L., Burke, J.P., Greene, C.H., Wang, H., Gould, P.L., and Stwalley, W.C. (1999) Collisional properties of ultracold potassium: consequences for degenerate Bose and Fermi gases, Phys. Rev. A 59, 3360–3664.

    Article  ADS  Google Scholar 

  18. DeMarco, B., Bohn, J.L., Burke, J.R, Holland, M., and Jin, D.S., (1999) Measurement of p-wave treshold law using evaporatively cooled fermionic atoms, Phys. Rev. Lett. 82, 4208–4211.

    Article  ADS  Google Scholar 

  19. Ketterle, W., and Van Druten, N.J. (1996) Evaporative cooling of trapped atoms, Adv. At. Mol. Opt. Phys. 37, 181.

    Article  ADS  Google Scholar 

  20. Houbiers, M., Ferwerda, R., Stoof, H.T.C., McAlexander, W.I., Sackett, C.A., and Hulet, R.G. (1997) Superfluid state of atomic 6Li in a magnetic trap, Phys. Rev. A 56, 4864–4878.

    Article  ADS  Google Scholar 

  21. Grimm, R., Weidemüller, M., and Ovchinikov, Y.B. (2000) Optical dipole traps for neutral atoms, Adv. At. Mol. Opt. Phys. 42, 95.

    Article  ADS  Google Scholar 

  22. Roati, G., Jastrzebsky, W., Simoni, A., Modugno, G., and Inguscio, M., (in press) Optical trapping of fermionic potassium for collisional studies, e-print: physics/0010065.

    Google Scholar 

  23. Vuletic, V., Chin, C., Kerman, A.J., and Chu, S. (1998) Degenerate Raman sideband cooling of trapped cesium atoms at very high atomic densities, Phys. Rev. Lett. 81, 5768–5771.

    Article  ADS  Google Scholar 

  24. Corwin, K.L., Kuppens, S.J.M., Cho, D., and Wieman, G.E. (1999) Spin-polarized atoms in a circularly polarized optical dipole trap, Phys. Rev. Lett. 83, 1311–1314, 1999.

    Article  ADS  Google Scholar 

  25. Prevedelli, M., Cataliotti, F.S., Cornell, E.A., Ensher, J.R., Fort, C., Ricci, L., Tino, G.M., and Inguscio, M. (1999) Trapping and cooling of potassium isotopes in a double-magneto-opticaltrap apparatus, Phys. Rev. A 59, 886–888.

    Article  ADS  Google Scholar 

  26. Fort, C. (2000) Experiments with potassium isotopesin S. Martelluci, A. N. Chester, A. Aspect, M. Inguscio (eds.), Proceedings of the 27th Course International School of Quantum Electronics on Bose-Einstein Condensates and Atom Lasers, Kluwer Academic/Plenum Publishers, pp. 291–300.

    Google Scholar 

  27. Butts, D.A., and Rokhsar, D.S. (1997) Trapped Fermi gases, Phys. Rev. A 55, 4346–4350.

    Article  ADS  Google Scholar 

  28. Holland, M.J., DeMarco, B., and Jin, D.S. (2000) Evaporative cooling of a two-component degenerate Fermi gas, Phys. Rev. A 61, 053610.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Modugno, G., Roati, G. (2002). Optical and Magnetic Trapping of Fermionic Potassium. In: Atutov, S.N., Calabrese, R., Moi, L. (eds) Trapped Particles and Fundamental Physics. NATO Science Series, vol 51. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0440-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0440-4_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0442-1

  • Online ISBN: 978-94-010-0440-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics