Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 51))

  • 259 Accesses

Abstract

Lithium is an attractive atom for studies of quantum degenerate gases because its two naturally occurring isotopes, 6Li and 7Li, have opposite exchange symmetry and have stable nuclei. Since 6Li is composed of an odd number of spin-1/2 particles (3 electrons, 3 protons, 3 neutrons), it is itself a half-integer composite particle obeying Fermi-Dirac statistics. On the other hand, 7Li with its extra neutron is a composite boson. The phenomena exhibited by each isotope, therefore, should be vastly different at ultra-low temperatures, where effects of quantum degeneracy are manifested. For example, we have shown that 7Li undergoes Bose-Einstein condensation (BEC) [1], the paradigm of all quantum statistical phase transitions. A gas of 6Li, conversely, cannot directly Bose condense, although they can undergo a BEC-like phase transition in which particles form ‘Cooper pairs’. This effect is responsible for electronic superconductivity and for superfluidity of 3He.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bradley, C.C., Sackett, C.A., Tollett, J.J., and Hulet, R.G. (1995) Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions, Phys. Rev. Lett. 75, 1687.

    Article  ADS  Google Scholar 

  2. Huang, K. (1987). Statistical Mechanics, John Wiley and Sons, New York.

    MATH  Google Scholar 

  3. Fried, D.G., Killian, T.C., Willmann, L., Landhuis, D., Moss, S.C., Kleppner, D., and Greytak, T.J. (1998) Bose-Einstein condensation of atomic hydrogen, Phys. Rev. Lett. 81, 3811–3814.

    Article  ADS  Google Scholar 

  4. Dalfovo, F., Giorgini, S., Pitaevskii, L.P., and Stringari, S. (1999) Theory of Bose-Einstein condensation in trapped gases, Rev. Mod Phys. 71, 463–512.

    Article  ADS  Google Scholar 

  5. Weiner, J., Bagnato, V., Zilio, S., and Julienne, P.S. (1999) Experiments and Theory in Cold and Ultracold Collisions, Rev. Mod. Phys. 71, 1–85.

    Article  ADS  Google Scholar 

  6. Abraham, E.R.I., McAlexander, W.I., Sackett, C.A., and Hulet, R.G. (1995) Spectroscopic Determination of the S-Wave Scattering Length of Lithium, Phys. Rev. Lett. 74, 1315–1318.

    Article  ADS  Google Scholar 

  7. Abraham, E.R.I., McAlexander, W.I., Gerton, J.M., Hulet, R.G., Cote, R., and Dalgarno, A. (1997) Triplet s-wave resonance in 6Li collisions and scattering lengths of 6Li and 7Li, Phys. Rev. A 55, R3299-3302.

    Google Scholar 

  8. Tsai, C.C., Freeland, R.S., Vogels, J.M., Boesten, H.M.J.M., Verhaar, B.J., and Heinzen, D.J. (1997) Two-Color Photoassociation Spectroscopy of Ground State Rb2, Phys. Rev. Lett. 79, 1245–1248.

    Article  ADS  Google Scholar 

  9. Bogoliubov, N. (1947) On the Theory of Superfluidity, Journal of Physics (USSR) 11, 23–32.

    Google Scholar 

  10. Stoof, H.T.C. (1994) Atomic Bose gas with a negative scattering length, Phys. Rev. A 49, 3824–3830.

    Article  ADS  Google Scholar 

  11. Bradley, C.C., Sackett, C.A., and Hulet, R.G. (1997) Bose-Einstein Condensation of Lithium: Observation of Limited Condensate Number, Phys. Rev. Lett. 78, 985–989.

    Article  ADS  Google Scholar 

  12. Ruprecht, P.A., Holland, M.J., Burnett, K., and Edwards, M. (1995) Time-dependent solution of the nonlinear Schrodinger equation for Bose-condensed trapped neutral atoms, Phys. Rev. A 51, 4704.

    Article  ADS  Google Scholar 

  13. Sackett, C.A., Bradley, C.C., Welling, M., and Hulet, R.G. (1997) Bose-Einstein Condensation of Lithium, Appl. Phys. B 65, 433–440.

    Article  ADS  Google Scholar 

  14. Baym, G. and Pethick, C.J. (1996) Ground-State Properties of Magnetically Trapped Bose-Condensed Rubidium Gas, Phys. Rev. Lett. 76, 6–9.

    Article  ADS  Google Scholar 

  15. Stoof, H.T.C. (1997) Macroscopic Quantum Tunneling of a Bose Condensate, J. Stat. Phys. 87, 1353–136

    Article  ADS  Google Scholar 

  16. Tollett, J.J., Bradley, C.C., Sackett, C.A., and Hulet, R.G. (1995) Permanent Magnet Trap for Cold Atoms, Phys. Rev. A 51, R22–R25.

    Article  ADS  Google Scholar 

  17. PŐrez-GarcŠa, V., Michinel, H., Cirac, J.I., Lewenstein, M., and Zoller, R (1997) Dynamics of Bose-Einstein condensates: Variational solutions of the Gross-Pitaevskii equations, Phys. Rev. A 56, 1424–1432.

    Article  ADS  Google Scholar 

  18. Sackett, C.A., Bradley, C.C., and Hulet, R.G. (1997) Optimization of Evaporative Cooling, Phys. Rev. A 55, 3797.

    Article  ADS  Google Scholar 

  19. Gerton, J.M., Sackett, C.A., Frew, B.J., and Hulet, R.G. (1999) Dipolar relaxation collisions in magnetically trapped 7Li, Phys. Rev. A 59, 1514–1516.

    Article  ADS  Google Scholar 

  20. Bradley, C.C., Sackett, C.A., and Hulet, R.G. (1997) Analysis of In Situ Images of Bose-Einstein Condensates of Lithium, Phys. Rev. A 55, 3951.

    Article  ADS  Google Scholar 

  21. Sackett, C.A., Stoof, H.T.C, and Hulet, R.G. (1998) Growth and Collapse of a Bose Condensate with Attractive Interactions, Phys. Rev. Lett. 80, 2031–2034.

    Article  ADS  Google Scholar 

  22. Sackett, C.A., Gerton, J.M., Welling, M., and Hulet, R.G. (1999) Measurements of Collective Collapse in a Bose-Einstein Condensate with Attractive Interactions, Phys. Rev. Lett. 82, 876.

    Article  ADS  Google Scholar 

  23. Kagan, Y., Shlyapnikov, G.V., and Walraven, J.T.M. (1996) Bose-Einstein Condensation in Trapped Atomic Gases, Phys. Rev. Lett. 76, 2670–2673.

    Article  ADS  Google Scholar 

  24. Shuryak, E.V. (1996) Bose Condensate made of Atoms with Attractive Interaction is Metastable, Phys. Rev. A 54, 3151.

    Article  ADS  Google Scholar 

  25. Ueda, M. and Leggett, A.J. (1998) Macroscopic Quantum Tunneling of a Bose-Einstein Condensate with Attractive Interactions, Phys. Rev. Lett. 80, 1576.

    Article  ADS  Google Scholar 

  26. Huepe, C., MŐtens, S., Dewel, G., Borckmans, P., and Brachat, M.E. (1999) Decay Rates in Attractive Bose-Einstein Condensates, Phys. Rev. Lett. 82, 1616–1619.

    Article  ADS  Google Scholar 

  27. Singh, K.G., and Rokhsar, D.S. (1996) Collective Excitations of a Confined Bose Condensate, Phys. Rev. Lett. 77, 1667–1670.

    Google Scholar 

  28. Dodd, R.J., Edwards, M., Williams, C.J., Clark, C.W., Holland, M.J., Ruprecht, P.A., and Burnett, K. (1996) Role of attractive interactions on Bose-Einstein condensation, Phys. Rev. A 54, 661–664.

    Article  ADS  Google Scholar 

  29. Kagan, Y., Muryshev, A.E., and Shlyapnikov, G.V. (1998) Collapse and Bose-Einstein Condensation in a Trapped Bose Gas with Negative Scattering Length, Phys. Rev. Lett. 81, 933–937.

    Article  ADS  Google Scholar 

  30. Houbiers, M., and Stoof, H.T.C (1996) Stability of Bose condensed atomic 7Li, Phys. Rev. A 54, 505

    Article  ADS  Google Scholar 

  31. Chandrasekhar, S. (1957) An Introduction to the Study of Stellar Structure, Dover, New York.

    MATH  Google Scholar 

  32. Zhakharov, V.E. (1972) Collapse of Langmuir Waves, Sov. Phys. JETP 35, 908.

    ADS  Google Scholar 

  33. Zhakharov, V.E., and Synakh, V.S. (1975) The nature of the self-focusing singularity, Sov. Phys. JETP 41, 465.

    ADS  Google Scholar 

  34. Gammal, A., Frederico, T., Tomio, L., and Chomaz, P. (2000) Atomic Bose-Einstein condensation with three-body interactions and collective excitations, J. Phys. B 33, 4053–4067.

    Article  ADS  Google Scholar 

  35. Miesner, H.-J., Stamper-Kurn, D.M., Andrews, M.R., Durfee, D.S., Inouye, S., and Ketterle, W. (1998) Bosonic Stimulation in the Formation of a Bose-Einstein Condensate, Science 279, 1005–1007.

    Article  ADS  Google Scholar 

  36. Wynar, R., Freeland, R.S., Han, D.J., Ryu, C., and Heinzen, D.J. (2000) Molecules in a Bose-Einstein Condensate, Science 287, 1016–1019.

    Article  ADS  Google Scholar 

  37. Napolitano, R., Weiner, J., Williams, C.J., and Julienne, P.S. (1994) Line Shapes of High Resolution Photoassociation Spectra of Optically Cooled Atoms, Phys. Rev. Lett. 73, 1352–1355.

    Article  ADS  Google Scholar 

  38. Forrey, R.C., Kharchenko, V., Balakrishnan, N., and Dalgarno, A. (1999) Vibrational relaxation of trapped molecules, Phys. Rev. A 59, 2146–2152.

    Article  ADS  Google Scholar 

  39. Gerton, J.M., Strekalov, D., Prodan, I., and Hulet, R.G. (2000) Direct observation of growth and collpase of a Bose-Einstein condensate with attractive interactions, Nature 408, 692–695.

    Article  ADS  Google Scholar 

  40. Cornish, S.L., Claussen, N.R., Roberts, J.L., Cornell, E.A., and Wieman, C.E. (2000) Stable 85Rb Bose-Einstein condensates with widely tunable interactions, Phys. Rev. Lett. 85, 1795–1798.

    Article  ADS  Google Scholar 

  41. DeMarco, B., and Jin, D.S. (1999) Onset of Fermi degeneracy in a trapped atomic gas, Science 285, 170

    Article  Google Scholar 

  42. Stoof, H.T.C., Houbiers, M., Sackett, C.A., and Hulet, R.G. (1996) Superfluidity of Spin-Polarized 6Li, Phys. Rev. Lett. 76, 10.

    Article  ADS  Google Scholar 

  43. Houbiers, M., Ferwerda, R., Stoof, H.T.C., McAlexander, W.I., Sackett, C.A., and Hulet, R.G. (1997) The Superfluid State of Atomic 6Li in a Magnetic Trap, Phys. Rev. A 56, 4864–4878.

    Article  ADS  Google Scholar 

  44. Leggett, A.J. (1980) Cooper Pairing in Spin-Polarized Fermi Systems, J. Phys. (Paris) C 7, 19.

    Google Scholar 

  45. Houbiers, M., Stoof, H.T.C., McAlexander, W.I., and Hulet, R.G. (1998) Elastic and inelastic collisions of 6Li atoms in magnetic and optical traps, Phys. Rev. A 57, R1497–1500.

    Article  ADS  Google Scholar 

  46. Mewes, M.-O., Andrews, M.R., van Druten, N.J., Kurn, D.M., Durfee, D.S., and Ketterle, W. (1996) Bose-Einstein Condensation in a Tightly Confining dc Magnetic Trap, Phys. Rev. Lett. 77, 416–41

    Article  ADS  Google Scholar 

  47. Larson, D.J., Bergquist, J.C., Bollinger, J.J., Itano, W.M., and Wineland, D.J. (1986) Sympathetic Cooling of Trapped Ions: A Laser-Cooled Two-Species Nonneutral Ion Plasma, Phys. Rev. Lett. 57, 70–73.

    Article  ADS  Google Scholar 

  48. Myatt, C.J., Burt, E.A., Ghrist, R.W., Cornell, E.A., and Wieman, C.E. (1997) Production of Two Overlapping Bose-Einstein Condensates by Sympathetic Cooling, Phys. Rev. Lett. 78, 586–589.

    Article  ADS  Google Scholar 

  49. Phillips, W.D., and Metcalf, H. (1982) Laser Deceleration of an Atomic Beam, Phys. Rev. Lett. 48, 596–599.

    Article  ADS  Google Scholar 

  50. Zhang, W., Sackett, C.A., and Hulet, R.G. (1999) Optical detection of a Bardeen-Cooper-Schrieffer phase transition in a trapped gas of fermionic atoms, Phys. Rev. A 60, 504–507.

    Article  ADS  Google Scholar 

  51. Ruostekoski, J. (1999) Optical response of a superfluid state in dilute atomic Fermi-Dirac gases, Phys. Rev. A 60, R1775-1778.

    Google Scholar 

  52. Torma, P., and Zoller, P. (2000) Laser Probing of Atomic Cooper Pairs, Phys. Rev. Lett. 85, 487–90.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hulet, R.G., Gerton, J.M. (2002). Quantum Degeneracy in Lithium Gases. In: Atutov, S.N., Calabrese, R., Moi, L. (eds) Trapped Particles and Fundamental Physics. NATO Science Series, vol 51. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0440-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0440-4_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0442-1

  • Online ISBN: 978-94-010-0440-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics