Skip to main content

Electromagnetic Trapping of Cold Atoms: An Overview

  • Chapter
  • 270 Accesses

Part of the book series: NATO Science Series ((NAII,volume 51))

Abstract

After the brief historical introduction to physics of cold atoms I discuss the basic typesof dipole radiation forces used for cooling and trapping of cold atoms in the laser fields. An atom traps based on the dipole optical forces, dipole magnetic forces, combined dipole optical-magnetic forces, and the forces combined of the dipole optical-magnetic and gravity forces. The traps using the evanescent waves and near-field optical waves are discussed. An atom traps operation as the waveguiedes and cavities for cold atom are also considered. The review ends with the prospects of applications of cold trapped atoms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Paul, W. (1990) Rev. Mod. Phys. 62, 531.

    Article  ADS  Google Scholar 

  2. Dehmelt, H. (1990) Rev. Mod. Phys. 62, 525.

    Article  ADS  Google Scholar 

  3. Ramsey, N. (1990) Rev. Mod. Phys. 62, 541.

    Article  ADS  Google Scholar 

  4. Letokhov, V.S. (1968) JETP Lett. 7, 272

    Google Scholar 

  5. Letokhov, V.S. (1974) Proceedings of the Conference “Methods of Spectroscopy without Doppler Broadening of Excited Levels of Simple Molecules” (Aussois, France, May 23-26, 1973) P. 127; (1973) Laser and Unconventional Optics 146, p. 3.

    Google Scholar 

  6. Letokhov, V.S. (1975) Science 190, 344.

    Article  ADS  Google Scholar 

  7. Letokhov, VS. and Chebotayev, V.P. (1977) Nonlinear Laser Spectroscopy without Doppler Broadening, Springer, Berlin.

    Google Scholar 

  8. Hansch, T. and Schawlow, A. (1975) Optics Comm. 13, 68.

    Article  ADS  Google Scholar 

  9. Andreev, S.V., Balykin, V.I., Letokhov, V.S., and Minogin, V.G. (1981) Soy. Phys. JETP Lett. 34, 44

    ADS  Google Scholar 

  10. Andreev, S.V., Balykin, V.I., Letokhov, V.S., and Minogin, V.G. (1982) Soy. Phys. JETP. 55(5), 828.

    Google Scholar 

  11. Phillips, W. and Metcalf, H. (1982) Phys. Rev. Lett. 48, 596.

    Article  ADS  Google Scholar 

  12. Dowling, J.P. and Gea-Banacloche, J. (1996) Adv. Atom. Molec. and Opt. Physics 37, 2.

    ADS  Google Scholar 

  13. Ohtsu, M. (ed.) (1998) Near Field Nano/Atom Optics and Technology, Springer, Berlin.

    Google Scholar 

  14. Balykin, V.I. (1999). Adv. Atom. Molec. and Opt. Phys. 41, 181.

    Article  ADS  Google Scholar 

  15. Metcalf, H. and van der Straten, P. (1999) Laser Cooling and Trapping, Springer, Berlin.

    Book  Google Scholar 

  16. Grimm, R., Weidemulier, M., and Ovchinnikov, Yu.B. (2000) Adv. Atom. Molec. and Opt. Physics 42, 95.

    Article  ADS  Google Scholar 

  17. Balykin, V.I., Minogin, VG., and Letokhov, VS. (2000) Reports on Progress in Physics 63, 1429.

    Article  ADS  Google Scholar 

  18. Minogin, V. and Letokhov, V. (1987) Laser Light Pressure on Atoms, Gordon and Breach, New York.

    Google Scholar 

  19. Kazantsev, A., Surdutovich, G., and Yakovlev, V. (1990) Mechanical Action of Light on Atoms, World Scientific, Singapore.

    Book  Google Scholar 

  20. Glauber, R.J. (1963) Phys. Rev. 1, B2766.

    Article  MathSciNet  Google Scholar 

  21. Fedorov, M.V., Goreslavsky, S.P., and Letokhov, V.S. (1997) Phys. Rev. E 55, 1015.

    Article  ADS  Google Scholar 

  22. Gordon, J. and Ashkin, A. (1980) Phys. Rev. A 21, 1606.

    Article  ADS  Google Scholar 

  23. Gohen-Tannoudji, C. (1961) CR. Acad. Sci. (Paris) 252, 394.

    Google Scholar 

  24. Carver, R.R. (1961) Phys. Rev. 124, 800.

    Article  ADS  Google Scholar 

  25. Minogin, V.G. (1980) Zh. Eksp. Teor. Fiz. 79, 2044.

    Google Scholar 

  26. Chu, S., Bjorkholm, J.E., Ashkin, A., and Cable, A. (1986) Phys. Rev. Lett. 57, 314.

    Article  ADS  Google Scholar 

  27. Adams, CS., Lee, H., Davidson, H.J., Kasevich, M., and Chu, S. (1995) Phys. Rev. Lett. 74, 3577.

    Article  ADS  Google Scholar 

  28. Yang, K.-H., Stwalley, W.C., Heneghan, S.P., Bahns, J.T., Wang, K.-K., and Hess, T.R. (1986) Phys. Rev. A 34, 2962.

    Article  ADS  Google Scholar 

  29. O’Hara, K.M., Granado, S.R., Gehm, ME., Savard, T.A., Bali, I., Ficed, C., and Thomas, J.E. (1999) Phys. Rev. Lett. 82, 4204.

    Article  ADS  Google Scholar 

  30. Takekoshi, T., Patterson, B.H., and Knize, R.J. (1998) Phys. Rev. Lett. 81, 5105.

    Article  ADS  Google Scholar 

  31. Letokhov, VS., Minogin, V.G., and Pavlik, B.D. (1997) Soy. Phys.-JETP 45(4), 698.

    Google Scholar 

  32. Salomon, C., Dalibard, J., Aspect, A., Metcalf, H., and Cohen-Tannoudji, C. (1987) Phys. Rev. Lett. 59, 1659.

    Article  ADS  Google Scholar 

  33. Balykin, V.I., Letokhov, VS., Ovchinnikov, Yu.B., Sidorov, V.I., and Shulga, S.V. (1988). Opt. Lett. 13, 958.

    Article  ADS  Google Scholar 

  34. Westbrook, C.I., Watts, R.N., Tanner, C.E., Ralston, S.L., Phillips, W.D., Lett, P.D., and Gould, P.L. (1990) Phys. Rev. Lett. 65, 33.

    Article  ADS  Google Scholar 

  35. Jessen, P.S., Gerz, C., Lett, P.D., Phillips, W.D., Ralston, S.L., Spreew, R.J.C., and Westbrook, C.I. (1992) Phys. Rev. Lett. 69, 49.

    Article  ADS  Google Scholar 

  36. Mallow, B.R. (1969) Phys. Rev. A 5, 2217.

    Article  ADS  Google Scholar 

  37. De Pue, M.T., McCormick, C., Winoto, S.L., Oliver, S., and Weiss, D.S. (1999) Phys. Rev. Lett. 82, 2262.

    Article  ADS  Google Scholar 

  38. Cook, R.J. and Hill, R.K. (1982) Opt. Comm. 43, 258.

    Article  ADS  Google Scholar 

  39. Ol’shannii, M.A., Letokhov, V.S., and Minogin, V.G. (1992) Nonlinear Optics 3, 283.

    Google Scholar 

  40. Balykin, V.I., Letokhov, V.S., Ovchinnikov, Yu.B., and Sidorov, A.I. (1988) Phys. Rev. Lett. 60, 213

    Article  ADS  Google Scholar 

  41. Balykin, V.I. and Letokhov, V.S. (1989) Appl. Phys. 348, 517.

    Google Scholar 

  42. Mabuchi, H., Kimple, H.J. (1994) Opt. Lett. 19, 749.

    Article  ADS  Google Scholar 

  43. Ovchinnikov, Yu.B., ShulŠga S.V., and Balykin, V.I. (1991) J. Phys. B 24, 3173.

    Article  ADS  Google Scholar 

  44. OlŠshanii, M.A., Ovchinnikov, Yu.B., and Letokhov, VS. (1993) Opt. Comm. 98, 77.

    Article  ADS  Google Scholar 

  45. Renn, H.J., Montgomeryj, D., Vdovin, O., Anderson, D.Z., Wieman, C.E., and Cornell, E.A. (1995) Phys. Rev. Lett. 75, 3253.

    Article  ADS  Google Scholar 

  46. Savage, C.M., Marksteiner, S., and Zoller, P. (1993) in: Fundamentals of Quantum Optics III (ed. F. Ehlotzky), Springer, Berli

    Google Scholar 

  47. Renn, M.J., Doulky, E.A., Cornell, E.A., Wieman, C.E., and Anderson, D.Z. (1996) Phys. Rev. A 53, B648.

    Article  ADS  Google Scholar 

  48. Subbotin, M.V., Balykin, V.I., Laryushin, D.V., and Letokhov, V.S. (1997) Opt. Comm. 139, 107.

    Article  ADS  Google Scholar 

  49. Ovchinnikov, Yu.B., Laryushin, D.V., Balykin, V.I., and Letokhov, V.S. (1995) JE TP Lett. 62, 113.

    ADS  Google Scholar 

  50. Wing, W. (1984) Prog. Quant. Electr. 8, 181.

    Article  ADS  Google Scholar 

  51. Bergeman, T., Erez, G., and Metcalf, H. (1989) Phys. Rev. A 35, 1535.

    Article  ADS  Google Scholar 

  52. Migdall, A., Prodan, J., Phillips, W., Bergeman, T., and Metcalf, H. (1985) Phys. Rev. Lett. 54, 259

    Article  ADS  Google Scholar 

  53. Vuletic, V., Fischer, T., Praeger, M., Hansch, T., and Zimmermann, (1998) Phys. Rev. Lett. 80, 1634.

    Article  ADS  Google Scholar 

  54. Gott, Y.V., Ioffe, M.S., and TelŠkovskii, V.G. (1962) Nucl. Fusion, Suppl. Pt. 3, 1045.

    Google Scholar 

  55. Ketterle, W., and van Druten, N.J. (1996) Adv. Atom. Mol. Opt. Phys. 37, 181.

    Article  ADS  Google Scholar 

  56. Esslinger, T., Bloch, I., and Hansch, T.W. (1998) Phys. Rev. A 58, R2664.

    Article  ADS  Google Scholar 

  57. Bloch, I., Hansch, T.W., and Esslinger, T. (1999) Phys. Rev. Lett. 82, 2254.

    Article  ADS  Google Scholar 

  58. Petrich, W., Anderson, M.H., Ensher, J.R., and Cornell, E.A. (1995) Phys. Rev. Lett. 74, 352.

    Article  Google Scholar 

  59. Davis, KB., Mewes, M.-O., Andrews, M.R., van Druten, N.J., Durfee, D.S., Kurn, D.M., and Ketterle, W.(1995) Phys. Rev. Lett. 75, 3969.

    Article  ADS  Google Scholar 

  60. Ungar, P.J., Weiss, D.S., Riis, E., and Chu, S. (1989) JOSA B 6, 2059.

    Article  ADS  Google Scholar 

  61. Weiss, D.S., Riis, E., Shevy, Y., Ungar, P.J., and Chu, S. (1989) JOSA B 6, 2072.

    Article  ADS  Google Scholar 

  62. Dalibard, J., and Cohen-Tannoudji, C., (1989) JOSA B 6, 2023.

    Article  ADS  Google Scholar 

  63. Raab, EL., Prentiss, M., Cable, A., Chu, S., and Pritchard, D.L. (1987) Phys. Rev. Lett. 23, 2631.

    Article  ADS  Google Scholar 

  64. Shimizu, F., Shimizu, K., and Takuma, H. (1991) Opt. Lett. 16, 339.

    Article  ADS  Google Scholar 

  65. Monroe, C., Swann, W., Robinson, H., and Wieman, C.E. (1990) Phys. Rev. Lett. 65, 1571.

    Article  ADS  Google Scholar 

  66. Ketterle, W., Kendall, B.D., Ioffe, M.A., Martin, A., and Pritchard, D. (1993) Phys. Rev. Lett. 70, 225

    Article  ADS  Google Scholar 

  67. Flugge, S. Practical Quantum Mechanics (1971) Springer, Berlin.

    Book  Google Scholar 

  68. Aminoff, C.G., Steane, A.M., Bouyer, P., Desbiolles, P., Dalibard, J., and Cohen-Tannoudji, C., (1993) Phys. Rev. Lett. 71, 3083.

    Article  ADS  Google Scholar 

  69. Soding, J., Grimm, R., and Ovchinnikov, Yu.B. (1995) Opt. Comm. 119, 652.

    Article  ADS  Google Scholar 

  70. Ovchinnikov, Yu.B., Manek, I., and Grimm, R. (1997) Phys. Rev. Lett. 79, 2225.

    Article  ADS  Google Scholar 

  71. Bouwkamp, C.J. (1950) Philips Rev. Rep. 5, 401.

    MathSciNet  Google Scholar 

  72. Klimov, V.V. and Letokhov, V.S. (1994) Opt. Comm. 106, 151.

    Article  ADS  Google Scholar 

  73. Klimov, V.V. and Letokhov VS. (1995) Opt. Comm. 121, 130.

    Article  ADS  Google Scholar 

  74. Dicke, R.H. (1954) Phys. Rev. 93, 99.

    Article  ADS  MATH  Google Scholar 

  75. Feynman, R. (1992) in Nanotechnlology: Research and Perspectives, eds. B.C. Crandall and J. Lewis, Cambridge: The MIT Press, 360.

    Google Scholar 

  76. Hu, Z. and Kimble, H.J. (1994) Opt. Lett. 19, 1888.

    Article  ADS  Google Scholar 

  77. Ruschewitz, F. et al. (1996) Europhys. Lett. 34, 651.

    Article  ADS  Google Scholar 

  78. Willems, P.A. et al. (1997) Phys. Rev. Lett. 78, 1660.

    Article  ADS  Google Scholar 

  79. Haubrich, D. et al. (1996) Europhys. Lett. 34, 663.

    Article  ADS  Google Scholar 

  80. Berman, P. Ed. (1994) Cavity Quantum Electrodynamics, Academic Press, San-Diego.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Letokhov, V.S. (2002). Electromagnetic Trapping of Cold Atoms: An Overview. In: Atutov, S.N., Calabrese, R., Moi, L. (eds) Trapped Particles and Fundamental Physics. NATO Science Series, vol 51. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0440-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0440-4_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0442-1

  • Online ISBN: 978-94-010-0440-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics