Mass Spectrometry at 100 Parts Per Trillion

Part of the NATO Science Series book series (NAII, volume 51)


Using a Penning trap single ion mass spectrometer, we have measured the atomic masses of 13 isotopes, many important for fundamental metrology and fundamental constants [9, 16, 3]. The fractional accuracy of the measurements, ≈ 10−10, is typically two orders of magnitude better than previously accepted values. This paper provides an overview of the MIT Penning trap measurements with special emphasis on the new techniques which we have developed for making measurements with accuracy 10−10. We go on to discuss some current work and proposals for improving the accuracy by another order of magnitude. We conclude with a discussion of the scientific payoff already realized, and the future scientific applications of precision mass spectrometry.


Cyclotron Frequency Johnson Noise Gravity Gradiometer Trapping Voltage Cyclotron Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bevington, P. and Robinson, D. (1992) Data Reduction and Error Analysis for the Physical Sciences, 2nd edition, McGraw-Hill, Boston.Google Scholar
  2. 2.
    Bonn J. Bornschein B. Bornschein L. Fickinger L. Kazachenko O. Kovalik A. Kraus C. Otten E.W. Ulrich H. and Weinheimer C. 2000 Newest results from the Mainz neutri-mass experiment Phys. Atom. Nuclei 636 969–974ADSCrossRefGoogle Scholar
  3. 3.
    Bradley M. P. Porto J.V. Rainville S. Thompson J.K. and Pritchard D.E. 1999 Penning trap measurements of the masses of Cs-133 Rb-87 Rb-85 and Na-23 with uncertainties 0.2 ppb Phys. Rev. Lett. 8322 4510–4513ADSCrossRefGoogle Scholar
  4. 4.
    Brown L. S. and Gabrielse G. 1986 Geonium Theory — Physics of a Single Electron or Ion in a Penning Trap Rev. Mod. Phys. 581 233–311ADSCrossRefGoogle Scholar
  5. 5.
    Cornell E. A. Boyce K.R. Fygenson D.L.K. and Pritchard D.E. 1992 2 Ions in a Penning Trap — Implications for Precision Mass-Spectroscopy Phys. Rev. A 45(5) 3049–3059ADSCrossRefGoogle Scholar
  6. 6.
    Cornell E.A. Weisskoff R.M. Boyce K.R. Flanagan R.W. Lafyatis G.P. and Pritchard D.E. 1989 Single-Ion Cycylotron-Resonance Measurement of MCo+ MN2+ Phys. Rev. Lett. 63(16) 1674–1677ADSCrossRefGoogle Scholar
  7. 7.
    Cornell E.A. Weisskoff R.M. Boyce K.R. and Pritchard D.E. 1990 Mode-Coupling in a Penning Trap — Pi-Pulses and a Classical Avoided Crossing Phys. Rev. A 41(1) 312–315ADSCrossRefGoogle Scholar
  8. 8.
    Difilippo F. Natarajan V. Boyce K.R. and Pritchard D.E. 1992 Classical Amplitude Squeezing for Precision-Measurements Phys. Rev. Lett. 68(19) 2859–2862ADSCrossRefGoogle Scholar
  9. 9.
    Difilippo F. Natarajan V. Boyce K.R. and Pritchard D.E. 1994 Accurate Atomic Masses for Fundamental Metrology Phys. Rev. Lett. 73(11) 1481–1484ADSCrossRefGoogle Scholar
  10. 10.
    Fogelberg B. Mezilev K.A. Mach H. Isakov V.I. and Slivova J. 1999 Precise atomic mass values near Sn-132 The resolution of a puzzle Phys. Rev. Lett. 82(9) 1823–1826ADSCrossRefGoogle Scholar
  11. 11.
    Forward R. 1979 Electronic cooling of resonant gravity gradioeters J. Appl. Phys. 50(1) 1ADSCrossRefGoogle Scholar
  12. 12.
    Greene G.L. Dewey M.S. Kessler E.G. and Fischbach E. 1991 Test of Special Relativity by a Determination of the Lorentz Limiting Velocity — Does E = Mc 2 Phys.Rev. D 448 R2216–R2219ADSCrossRefGoogle Scholar
  13. 13.
    Huber, P. (1981) Robust Statistics, Wiley, New York.zbMATHCrossRefGoogle Scholar
  14. 14.
    Kessler E.G. Dewey M.S. Deslattes R.D. Henins A. Borner H.G. Jentschel M. Doll C. and Lehmann H. 1999 The deuteron binding energy and the neutron mass Phys. Lett. A 255(4–6) 221–229ADSCrossRefGoogle Scholar
  15. 15.
    Lobashev V.M. 2000 Direct search for the neutri mass in the beta decay of tritium Status of the ‘Troitsk neutri-mass’ experiment Phys. Atom. Nuclei 63(6) 962–968ADSCrossRefGoogle Scholar
  16. 16.
    Natarajan V. Boyce K.R. Difilippo F. and Pritchard D.E. 1993 Precision Penning Trap Comparison of ndoublets — Atomic Masses of H D and the Neutron Phys. Rev. Lett. 71(13) 1998–2001ADSCrossRefGoogle Scholar
  17. 17.
    Natarajan V. Difilippo F. and Pritchard D.E. 1995 Classical Squeezing of an Oscillator for Subthermal ise Operation Phys. Rev. Lett. 74(15) 2855–2858ADSCrossRefGoogle Scholar
  18. 18.
    Van Dyck RS, J., F. DL, Z. SL, and S. PB (1998) High precision Penning trap mass spectroscopy and a new measurement of the protonŠs atomic mass, in Trapped Charged Particles and Fundamental Physics., Vol. 457, Asilomar, CA, pp. 101–110, AIP.Google Scholar
  19. 19.
    Vandyck R.S. Farnham D.L. and Schwinberg P.B. 1993 Tritium He-3 Mass Difference Using the Penning Trap Mass-Spectroscopy Phys. Rev. Lett. 70(19) 2888–2891ADSCrossRefGoogle Scholar
  20. 20.
    Wapstra A. and Audi G. 1985 The 1983 atomic mass evaluation. I. Atomic mass table. Nuc Phys A 432(1) 1–54ADSCrossRefGoogle Scholar
  21. 21.
    Weisskoff R.M. Lafyatis G.P. Boyce K.R. Cornell E.A. Flanagan R.W.and Pritchard D.E. 1988 Rf Squid Detector for Single-Ion Trapping Experiments J. Appl. Phys. 63(9) 4599–4604ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  1. 1.Department of Physics and Research Laboratory of ElectronicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations