The distribution of rare earth elements and yttrium in water-rock interactions: field observations and experiments

  • P. Möller
Part of the Water Science and Technology Library book series (WSTL, volume 40)


The partition of REE and Y abundances between the source rock and the aqueous phase has been studied in natural water and steam ranging from 10 to 400°C. Rare earth elements (REE) and Y abundances in aqueous fluids show a variability over 6 orders of magnitudes. For grouping of waters according to their source rocks, the patterns of REY/Ca ratio are much more appropriate than the conventional REY abundance patterns. Waters from mafic igneous rocks show higher REY/Ca ratios than those from granites. REY/Ca ratios in waters from metamorphites are lower than those of the igneous counterparts. Experimental leaching of the source rocks at pH values of about 3 yield patterns that differ from those of the natural fluids. Only natural acidic waters approach the results of the leaching experiments. The leaching results give insight into the distribution of REY in rocks and aids the interpretation of the anomalous behaviour of Eu, Ce, and Y. Anomalies inherited from the source rock can be distinguished from those acquired during fluid migration. Leachates only show inherited ones, whereas both types of anomalies occur in the natural waters. By comparing REY/Ca ratios of leachates and waters dimensionless retention factors of REY by rocks are defined, which are normally in the range of 102 to 104, which is mainly due to pH differences between natural and experimental leaching.


Source Rock Thermal Water Geothermal Field Mica Schist Aquifer Rock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anders, E. and Grevesse, N. (1989) Abundance of elements: Meteoric and solar. Geochim. Cosmochim. Acta 53, 197–214.CrossRefGoogle Scholar
  2. Banks D., Hall G., Reimann C., and Siewers U. (1999) Distribution of rare earth elements in crystalline bedrock groundwaters: Oslo and Bergen regions, Norway. Appl. Geochem. 14, 27–39.CrossRefGoogle Scholar
  3. Bau M. (1999) Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxides: Experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect. Geochim. Cosmochim. Acta, 63, 67–77.CrossRefGoogle Scholar
  4. Bau, M. and Dulski, P. (1995) Comparative study of yttrium and rare earth element behaviour in fluorine-rich hydrothermal fluids. Contrib. Mineral. Petrol, 119, 213–223.CrossRefGoogle Scholar
  5. Bau M. and Dulski P. (1996): Anthropogenic origin of positive gadolinium anomalies in river waters. Earth Planet. Sci. Lett, 143, 245–255.CrossRefGoogle Scholar
  6. Bau, M. and Möller, P. (1992) Rare earth element fractionation in metamorphogenic hydrothermal calcite, magnesite and siderite. Mineral. Petrol, 45, 231–246.CrossRefGoogle Scholar
  7. Bau, M., Koschinsky, A., Dulski, P. and Hein, H.J. (1996) Comparison of the partitioning behaviours of yttrium, rare-earth elements, and titanium between hydrogenetic marine ferromanganese crusts and sea- water. Geochim. Cosmochim. Acta, 60, 1709–1725.CrossRefGoogle Scholar
  8. Bau M., Möller P., and Dulski P. (1996) Yttrium and lanthanides in eastern Mediterranean seawater and their fractionation during redox cycling. Mar. Chem., 56, 123–131.CrossRefGoogle Scholar
  9. Bau, M., Usui, A., Pracejus, B., Mita, N., Kanai, Y., Irber, W., and Dulski, P. (1998) Geochemistry of low-temperature water-rock interaction: Evidence from natural waters, andesites and Fe-oxyhydroxide precipitates at Nishiki-numa iron-spring, Kokkaido, Japan. Chem. Geol, 15, 293–307.CrossRefGoogle Scholar
  10. Bea, F., Pereira, M.D., Corretge, L.G., and Fershitater, G.B. (1994) Differentiation of strongly peraluminous, perphosporous granites: The Pedrobernardo pluton, Central Spain. Geochim. Cosmochim. Acta, 58, 2609–2627.CrossRefGoogle Scholar
  11. Bilal, B.A. (1991) Thermodynamic study of Eu3+/Eu2+ redox reaction in aqueous solutions at elevated temperatures and pressures by means of cyclic voltammetry. Z. Naturforsch., 46a, 1108–1116.Google Scholar
  12. Braun, J.J., Pagel, M., Muller, J.P., Bilong, P., Michard A., and Guillet, B. (1990) Cerium anomalies in lateritic profiles. Geochim. Cosmochim. Acta, 54, 781–795.CrossRefGoogle Scholar
  13. Coryell, C.D., Chase, J.W., and Winchester, J.W. (1963) A procedure for geochemical interpretation of terrestrial rare earth abundance patterns, J. Geophys. Res., 68, 559–566.CrossRefGoogle Scholar
  14. Diakonov, I. I., Ragnarsdottir, K.V., and Tagirov, B. R. (1998) Standard thermodynamic properties and heat capacity equations of rare earth hydroxides: I. Ce(III)-, Pr-, Sm-, Eu(III)-, Gd-, Tb-, Dy-, Ho-, Er-, Tm-,Yb-, and Y-hydroxides. Comparison of thermochemical and solubility data. Chem. Geol., 151, 327–347.CrossRefGoogle Scholar
  15. Douville, E., Bienvenu, P., Charlou, J. L., Donval, J. P., Fouquet, Y., Appriou, P., and Gamo, T. (1999) Yttrium and rare earth elements in fluids from various deep-sea systems. Geochim. Cosmochim. Acta, 63, 627–643.CrossRefGoogle Scholar
  16. Drever, J.I. (1988) The geochemistry of natural waters. 2nd edt. Prentice Hall, Englewood Cliffs, New Jersey, 437p.Google Scholar
  17. Dulski, P. (1994) Interferences of oxide, hydroxide, and chloride analyte species in the determination of rare earth elements in geological samples by inductively coupled plasma-mass spectrometry. Fresenius J.Anal. Chem., 304, 193–203.Google Scholar
  18. Elderfield, H., Hawkesworth, C.J., and Greaves, M.J. (1981) Rare earth element geochemistry of oceanic ferromanganese nodules and associated sediments. Geochim. Cosmochim. Acta, 45, 513–528.CrossRefGoogle Scholar
  19. Elderfield, H. (1988) The oceanic chemistry of the rare earth elements. Philos Trans. R. Soc. London, Ser. A 325, 105–126.CrossRefGoogle Scholar
  20. Fuganti, A., Möller, P., Morteani, G., and Dulski, P. (1996): Gadolinio ed altre terre rare usabili come trac- cianti per stabilire l’ eta il movimento ed i rischi delle acque sotterranee: esempio dell area di Trento. Geol. Tec. Ambien., 4, 13–18.Google Scholar
  21. Garrels, R. M. (1967) Genesis of some ground waters from igneous rocks. In P. H. Abelson (ed.) Researches in Geochemistry, 2, 405–420.Google Scholar
  22. Garrels, R. M. and Mackenzie, F. T. (1967) Origin of the chemical compositions of some springs and lakes. In R. F. Gould (ed) Equilibrium concepts in natural water systems. Am. Chem. Soc. Adv. Chem. Ser., 67, 222–242.Google Scholar
  23. Giese, L. (1997) Geotechnische und umweltgeologische Aspekte bei der Förderung und Reinjektion von Thermalfluiden zur Nutzung geothermischer Energie am Beispiel des Geothermalfeldes Kizildere und des Umfeldes, W-Anatolien/Türkei. PhD Thesis , Free University Berlin, 250p.Google Scholar
  24. Giese, U. and Bau, M. (1994) Trace element accessibility in mid-ocean ridge and ocean island basalt: an experimental approach. Min. Mag., 58A, 329–330.CrossRefGoogle Scholar
  25. Grammaccioli, C.M., Diella, V.,and Demartin, F.(1999) The role of fluoride complexes in REE geochemistry and the importance of 4f electrons: some examples in minerals Europ. J. Mineralogy, 11, 983–992.Google Scholar
  26. Hein, J.R., Koschinsky, A., Bau, M., Manheim, F.T., Kang, J.-K. andRoberts, L. (2000). Cobalt-rich ferro-manganese crusts in the Pacific. In: D.S. Cronan, (ed.), Handbook of Marine Mineral Deposits. CRC Press, Boca Raton, Florida, 239–279.Google Scholar
  27. Hein, J.R., Koschinsky, A., Halbach, P., Manheim, F.T., Bau, M., Kang,J.-K., and Lubick, N. (1997) Iron and manganese oxide mineralization in the Pacific. In: K. Nicholson, J.R. Hein, B. Bühn, B., and S. Dasgupta,(eds.) Manganese Mineralization: Geochemistry and Mineralogy of Terrestrial and Marine Deposits. Geological Society of London Special Publication No. 119, London, 123–138.Google Scholar
  28. Hemond, C., Devey, C.W., and Chauvel, C. (1994) Source compositions and melting processes in the Society and Austral plumes (South Pacific Ocean): Element and isotope (Sr, Nd, Pb, Th) geochemistry. Chem.Geoi., 115, 7–45.CrossRefGoogle Scholar
  29. Humphris, S.E., Morrison, M.A., and Thompson, R.N. (1978) Influence of rock crystallisation history upon subsequent lanthanide mobility during hydrothermal alteration of basalt. Chem. Geol., 23, 125–137.CrossRefGoogle Scholar
  30. Irber, W. (1996) Laugungsexperimente an peraluminischen Graniten als Sonde für Alterationsprozesse im finalen Stadium der Granitkristallisation mit Anwendung auf das Rb-Sr-Isotopensystem. PhD thesis, Free Univ. Berlin, 319p.Google Scholar
  31. Irber, W., Bau, M. and Möller, P. (1996) Experimental leaching with cation exchange resin: a method to estimate element availabilities in geological samples. J. Conf. Abstr., 1, 280.Google Scholar
  32. Johannesson, K.H., Zhou, X., Guo, C., Stetzenbach, K.J., and Hodge, V.F. (2000) Origin of rare earth element signatures in groundwaters of circumneutral pH from southern Nevada and eastern California. Chem.Geol., 164, 239–257.CrossRefGoogle Scholar
  33. Kawabe, I., Ohta, A., Ishii, S., Tokumura, M. and Miyauchi, K. (1999) REE partitioning between Fe-Mn oxyhydroxide precipitates and weakly acid NaCl solution: Convex tetrad effect and fractionation of Y and Sc from heavy lanthanides. Geochem. J., 33, 167–179.CrossRefGoogle Scholar
  34. Klinkhammer, G.P., Elderfield, H., Edmond, J.M., and Mitra, A. (1994) Geochemical implications of rare earth element patterns in hydrothermal fluids from mid-ocean ridges. Geochim. Cosmochim. Acta, 58,5105–5113.CrossRefGoogle Scholar
  35. Maiwald, U. and Lodemann, M. (1994) Continuing recordings of physicochemical and hydraulic parameters during the pumping test 1991 at KTB pilot borehole (KTB-VB) Sci. Drill, 4, 95–99.Google Scholar
  36. McLennan, S.M. (1989) Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. In B.R. Lipin and G.A. McKray (eds) Geochemistry and mineralogy of rare earth elements.Mineral. Soc.Amer., 169–200.Google Scholar
  37. Michard, A. (1989) Rare earth systematics in hydrothermal fluids. Geochim. Cosmochim. Acta 53, 745–750.CrossRefGoogle Scholar
  38. Michard, A., Michard, G., Stüben, D., Stoffers, P., Cheminee, J.-L., and Binard, N. (1993) Submarine thermal springs associated with young volcanoes: The Teahitia vents, Society Island, Pacific Ocean. Geochim.Cosmochim. Acta, 57, 4977–4986.CrossRefGoogle Scholar
  39. Möller, P. (1988) The dependence of partition coefficients on differences on ionic volumes in crystal-melt systems. Contrib. Mineral. Petrol., 99, 62–69.CrossRefGoogle Scholar
  40. Möller, P. (1998): Rare earth elements and yttrium fractionation caused by fluid migration. In: M. Novak and J. Rosenbaum (eds.) Challenges to Chemical Geology. Czech Geol. Surv. Prague, 9–32.Google Scholar
  41. Möller, P. (2000): Rare earth elements and yttrium as geochemical indicators of the source of mineral and thermal waters. In I. Stober and K Bucher Hydrology of crystalline rocks Kluwer Acad. Press, 227–246.Google Scholar
  42. Möller, P. and Bau, M. (1993) Rare-earth patterns with positive cerium anomaly in alkaline waters from Lake Van, Turkey. Earth Planet. Sci. Lett., 117, 671–676.CrossRefGoogle Scholar
  43. Möller, P. and Giese, U. (1997) Determination of easily accessible metal fractions in rocks by batch leaching with acid cation-exchange resin. Chem. Geol., 137, 41–55.CrossRefGoogle Scholar
  44. Möller, P. and Holzbecher, E. (1998) Eu anomalies in hydrothermal fluids and minerals: A combined thermo-chemical and dynamic phenomenon. Freib. Forsch.-H., C475, 73-84. Möller, P., and 26 authors (1997b) Paleofluids and recent fluids in the upper continental crust: Results from the German Continental Deep Drilling program (KTB) J. Geophys. Res., 102 B8, 18233–18254.CrossRefGoogle Scholar
  45. Möller, P., Dulski, P., and Bau, M. (1994a) Rare earth element adsorption in a seawater profile above the East Pacific Rise. Chem. Erde, 54, 129–149.Google Scholar
  46. Möller, P., Dulski, P., and Giese, U. (1994b) Rare earth elements in KTB-VB fluids. Sci. Drill. 4, 113-122. Möller, P., Dulski, P., Gerstenberger, H., Morteani, G., and Fuganti, A. (1998): Rare earth elements, yttrium and H, O, C, Sr, Nd and Pb isotope studies in mineral waters and corresponding rocks from NW Bohemia Czech Republic. Appl. Geochem., 13, 975–994.CrossRefGoogle Scholar
  47. Möller, P., Dulski, P. and Morteani G. (submit.a) Concentration of rare earth elements, yttrium and some major elements in liquid and vapour phases and their source rocks from the Larderello-Travale geothermal field (Tuscany, Italy). GeothermicsGoogle Scholar
  48. Möller, P., Dulski, P., Özgür, N., and Conrad, M. (subm.b) Distribution of some major and rare earth elements in fluids and scalings of the geothermal field of Kizildere, Menderes Graben, Turkey. Geofluids.Google Scholar
  49. Möller, P., Stober, I., and Dulski, P. (1997a) Seltenerdelement-, Yittrium-Gehalte und Bleiisotope in Thermal-und Mineralwässern des Schwarzwaldes. Grundwasser, 2, 118–132.CrossRefGoogle Scholar
  50. Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., A32, 751–767.Google Scholar
  51. Stober, I. (1995) Die Wasserführung des kristallinen Grundgebirges. Stuttgart, 191p.Google Scholar
  52. Sverjensky, D.A. (1984) Europium redox equilibria in aqueous solution. Earth Plant. Sci. Lett., 67, 70–78.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • P. Möller
    • 1
  1. 1.GeoForschungsZentrum PotsdamTelegrafenberg, PotsdamGermany

Personalised recommendations