Skip to main content

Water-rock reaction experiments with Black Forest gneiss and granite

  • Chapter
Water-Rock Interaction

Part of the book series: Water Science and Technology Library ((WSTL,volume 40))

Abstract

Five characteristic samples of crystalline rocks of the Black Forest basement, three gneisses from the Kinzig Valley and two granites (Triberg & Bärhalde) from the Variscan basement of the Central Black Forest have been experimentally reacted with water in a batch reactor under a series of different experimental conditions in order to better understand the composition and evolution of groundwater in the crystalline basement.

Experiments with fine-grained powders (< 10μm) showed a high mobility of chloride: gneiss contains up to 48 mg dissolvable chloride per kg rock, granite up to 300 mg Cl / kg rock. The salinity of leachates is proportional to the amount of preserved fluid inclusions which is higher in Qtz-rich granites than in feldspathic gneisses with little Qtz. Experiments with CO2-saturated water did not distinctively increase Cl, although TDS increased by a factor of 6. In coarsely crushed gneiss and granite (grain size > 1 mm) 5 and 8 mg Cl was extractable per kg rock, respectively. Average measured Cl/Br ratio was about 100 (on a ppm basis), a value typical of primary high-T fluids trapped in fluid inclusions. The Cl/Br-ratios of leachates from granite and gneiss were very similar and independent of temperature.

In both, granite and gneiss, more Mg than Ca is extractable. However, Ca + Mg is higher by an order of magnitude in gneiss leachates. Leachates from both rocks are strongly alkali dominated and K > Na under most experimental conditions. Sulfate and nitrate are low (5 mg/l) compared with Cl which is typically higher by a factor of 30 in granite. Experiments at 50°C resulted in higher TDS and bulk reaction rate. Na/Ca ratio increased from 4 at 25°C to 13 at 50°C. Ion exchange on the fine rock powder and reaction products (clays) is important and increases K+(Na) relative to Ca+(Mg) in the water.

The origin of the solutes is related to alteration of biotite and secondary chlorite (K, Mg), alteration of plagioclase (Ca, Na) and opened fluid inclusions (Na, Cl). The dominate primary anion is chloride which resides in fluid inclusions and in halite on grain boundaries (in contrast to HCO3 which is atmospheric). The composition of the leachates is clearly related to the composition and nature of the minerals present in the rocks. The amount of water extractable solutes is very different for granites and gneisses, which reflects the petrographic and mineral compositional differences between the two rock types. These results correspond well with the observation of two different types of deep groundwater in the Black Forest basement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Azaroual, M., and Fouillac, Ch., 1997, Experimental study and modelling of granite-distilled water interactions at 180°C and 14 bar: Applied Geochemistry, 12, 55–73.

    Article  Google Scholar 

  • Banks, D., Reimann, C., Røyset, O., and others, 1995, Natural concentrations of major and trace elements in some Norwegian bedrock groundwaters: Applied Geochemistry, 10, 1–16.

    Article  Google Scholar 

  • Böhlke, J. K., and Irwin, J. J., 1992, Laser microprobe analyses of Cl, Br, I, and K in fluid inclusions: Implications for sources of salinity in some ancient hydrothermal fluids: Geochimica et Cosmochimica Acta, 56, 203–225.

    Article  Google Scholar 

  • Bottomley, D. J., Katz, A., Chan, L. H., Starinsky, A., Douglas, M., Clark, I. D. and Raven, K. G., 1999, The origin and evolution of Canadian Shield brines: evaporation or freezing of seawater? New lithium isotope and geochemical evidence from Slave craton. Chemical Geology 155, 295–322.

    Article  Google Scholar 

  • Bucher, K., and Stober, I., 2000, Hydro chemistry of water in the crystalline basement, In Stober, I, and Bucher, K., editors, Hydrogeology of Crystalline Rocks: Dordrecht, Kluwer Academic Publishers, 141–175.

    Google Scholar 

  • Busenberg, E., and Clemency, C. V., 1976, The dissolution kinetics of feldspars at 25°C and 1 atm C02 partial pressure: Geochimica et Cosmochimica Acta, 40, 41–49.

    Article  Google Scholar 

  • Edmunds, W. M., Kay, R. L. F., Miles, D. L., and others, 1987, The origin of saline groundwaters in the Carnmenellis granites, Cornwall (U.K.): Further evidence from minor and trace elements. In: Fritz, P., and Frape, S. K., ed, Saline Water And Gases In Crystalline Rocks: Ottawa, The Runge Press Limited, Geological Association of Canada Special Paper 33, 127–143.

    Google Scholar 

  • Emmermann, R., 1977, A petrogenetic model for the origin and evolution of hercynian granite series of the Schwarzwald: Neues Jahrbuch Der Mineralogie, Abhandlungen, 128, 219–253.

    Google Scholar 

  • Finger, F., Roberts, M. P., Haunschmid, B., and others, 1997, Variscan granitoids of central Europe: their typology, potential sources and tectonothermal relations: Mineralogy and Petrology, 61, 67–96.

    Article  Google Scholar 

  • Frape, S. K., and Fritz, P., 1987, Geochemical trends for groundwaters from the Canadian shield, In Fritz, P., and Frape, S. K., editors, Saline water and gases in crystalline rocks: Ottawa, The Runge Press Limited, Geological Association of Canada Special Paper 33, 19–38.

    Google Scholar 

  • Garrels, R. M., 1967, Genesis of some ground waters from igneous rocks. Researches in geochemistry, V. 2. In: Researches in geochemistry, V. 2 Abelson, Philip H. ed.), 405–420. John Wiley and Sons, New York, NY, United States.

    Google Scholar 

  • Garrels, R. M. and Howard, P. F., 1959, Reactions of feldspar and mica with water at low temperature and pressure. Clays and clay minerals. In: Clays and clay minerals Swineford, A. ed.), 68–88. International Series of Monographs on Earth Sciences Pergamon Press, Oxford, United Kingdom.

    Google Scholar 

  • Garrels, R. M. and MacKenzie, F. T., 1975, Origin of the chemical compositions of some springs and lakes. Geochemistry of water. In: Geochemistry of water Kitano, Y. Ed.), 257–267. In the collection: Benchmark papers in geology Dowden, Hutchinson & Ross, Inc., Stroudsburg, Pa., United States.

    Google Scholar 

  • Gascoyne, M., Davison, C. C., Ross, J. D., and others, 1987, Saline groundwaters and brines in plutons in the Canadian Shield. In: Fritz, P., and Frape, S. K., ed, Saline Water And Gases In Crystalline Rocks: Ottawa, The Runge Press Limited, Geological Association of Canada Special Paper 33, 53–68

    Google Scholar 

  • Grasby, St. E., Hutcheon, I., and Krouse, H. R., 2000, The influence of water-rock interaction on the chemistry of thermal springs in western Canada: Applied Geochemistry, 15, 439–454.

    Article  Google Scholar 

  • Grimaud, D., Beaucaire, C. and Michard, G., 1990, Modelling of the evolution of ground waters in a granite system at low temperature: the Stripaground waters, Sweden. Applied Geochemistry 5, 515–525.

    Article  Google Scholar 

  • Hofrnann, B., 1989, Genese, Alteration und rezentes Fliess-System der Uranlagerstätte Krunkelbach (Menzenschwand, Südschwarzwald): Nagra Technischer Bericht, 88–30, 195pp.

    Google Scholar 

  • lilies, J. H., and Greiner, G., 1978, Rhine graben and the Alpine system: Geological Society of America Bulletin, 89, 770–782.

    Article  Google Scholar 

  • Kalt, A., Altherr, R., and Hanel, M., 1995, Contrasting P-T conditions recorded in ultramafic high-pressure rocks from the Variscan Schwarzwald (F.R.G.): Contributions to Mineralogy and Petrology, 121, 45–60.

    Article  Google Scholar 

  • Kamineni, Ch. D., 1987, Halogen-bearing minerals in plutonic rocks: A possible source of chlorine in saline groundwater in the Canadian Shield. In: Fritz, P., and Frape, S. K., ed, Saline Water And Gases In Crystalline Rocks: Ottawa, The Runge Press Limited, Geological Association of Canada Special Paper 33, 69–79.

    Google Scholar 

  • Kretz, 1983, Symbols for rock - forming minerals: American Mineralogist, 68, 277–279.

    Google Scholar 

  • Lahermo, P. W., and Lampén, P. H., 1987, Brackish and saline groundwaters in FinlandFritz, P., and Frape, S. K., ed, Saline Water And Gases In Crystalline Rocks: Ottawa, The Runge Press Limited, 103–109.

    Google Scholar 

  • Lasaga, A. C., 1981, Rate laws of chemical reactions, In Lasaga, A. C., and Kirkpatrick, R. J., editors, Kinetics of Geochemical Processes: Washington, Mineralogical Society of America, Reviews in Mineralogy, 1–68.

    Google Scholar 

  • Liegl, R., 1998, Eluier- und Laugungsversuche an Kristallingesteinen des Schwarzwaldes: Unpublished Diploma Thesis, University of Freiburg, 70pp.

    Google Scholar 

  • Liegl, R., Stober, I., and Bucher, K., 1999, Experimental water-rock reaction of Black Forest gneiss and granite: Journal of Conference Abstracts, 4, 590.

    Google Scholar 

  • Lippolt, H. J., and Kirsch, H., 1994, Isotopic Investigation of Post-Variscan Plagioclase Sericitation in the Schwarzwald Gneiss Massif: Chemie Der Erde, 54, 179–198.

    Google Scholar 

  • Lodemann, M., Fritz, P., Wolf, M., and others, 1998, On the origin of saline fluids in the KTB: Applied Geochemistry, 13, 651–672.

    Article  Google Scholar 

  • Luce, R. W., Bartlett, R. W., and Olson, R. K., 1972, Dissolution kinetics of magnesium silicates: Geochimica et Cosmochimica Acta, 36, 35–50.

    Article  Google Scholar 

  • May, F., Hoernes, S. and Neugebauer, H. J., 1996, Genesis and distribution of mineral waters as a consequence of recent lithospheric dynamics: the Rhenish Massif, Central Europe. Geologische Rundschau 85, 782–797.

    Article  Google Scholar 

  • Mazurek, M. and Peters, T. 1992, Petrographie des kristallinen Grundgebirges der Nordschweiz und Systematik der herzynischen Granite. Schweizerische Mineralogische und Petrographische Mitteilungen 72, 11–35.

    Google Scholar 

  • Möller, P., et al., 1997, Paleo- and recent fluids in the upper continental crust - Results from the German Continental deep drilling Program (KTB): Journal of Geophysical Research, 102, 18245–18256.

    Article  Google Scholar 

  • Möller, P., Stober, I., and Dulski, P., 1997, Seltenerd-Element-, Yttrium-Gehalte und Blei-Isotope in Thermal- und Mineralwässern des Schwarzwaldes: Grundwasser, 3, 118–132.

    Google Scholar 

  • Nesbitt, H. W, Macrae, N. D. and Shotyk, W., 1991, Congruent and Incongruent Dissolution of Labradorite in Dilute, Acidic, Salt Solutions. Journal of Geology, 99, 429–442.

    Article  Google Scholar 

  • Pauwels, H., 1997, Geochemical results of a single-well hydraulic injection test in an experimental Hot Dry Rock geothermal reservoir Soultz-sous-Foréts Alsace, France: Applied Geochemistry, v. 12, p. 661–674.

    Article  Google Scholar 

  • Peters, T., 1986, Structurally incorporated and water extractable chlorine in the Boettstein granite (N. Switzerland): Contributions to Mineralogy and Petrology, 94, 272–273.

    Article  Google Scholar 

  • Savoye, S., Aranyossy, C., Beaucaire, M., Cathelineau, M., Louvat, D. and Michelot, J-L, 1998, Fluid inclusions in granites and their relationships with present-day groundwater chemistry. European Journal of Mineralogy 10, 1215–1226.

    Google Scholar 

  • Schleicher, H., and Fritsche, R., 1978, Zur Petrologie des Triberger Granites (Mittlerer Schwarzwald): Jahreshefte Des Geologischen Landesamt Baden-Württemberg, 20, 15–41.

    Google Scholar 

  • Shiraki, R., and Dunn, T. L., 2000, Experimental study on water-rock interactions during CO2 flooding in the Tensleep Formation, Wyoming, USA: Applied Geochemistry, 15, 265–280.

    Article  Google Scholar 

  • Stenger, R., 1982, Petrology and Geochemistry of the Basement Rocks of the Research Drilling Projekt Urach 3, in Haenel, R., editor, The Urach Geothermal Project: Stuttgart, Schweizerbart’sche Verlagsbuchhandlung, 41–48.

    Google Scholar 

  • Stober, I., 1996, Researchers Study Conductivity of Crystalline Rock in Proposed Radioactive Waste Site: EOS, Transactions of the American Geophysical Union, 77, 93–94.

    Article  Google Scholar 

  • Stober, I., and Bucher, K., 1999a, Deep groundwater in the crystalline basement of the Black Forest region: Applied Geochemistry, 14, 237–254.

    Article  Google Scholar 

  • Stober, I., and Bucher, K., 1999b, Origin of Salinity of Deep Groundwater in Crystalline Rocks: Terra Nova, 11, 181–185.

    Article  Google Scholar 

  • Stober, I., and Bucher, K., 2000, Hydraulic Properties of the upper Continental Crust: data from the Urach 3 geothermal well, In Stober, I., and Bucher, K., editors, Hydrogeology of Crystalline Rocks, Kluwer.

    Google Scholar 

  • Stober, I., Richter, A., Brost, E., and Bucher, K. 1999, The Ohlsbach Plume: Natural Release of Deep Saline Water from the Crystalline Basement of the Black Forest : Hydrogeology Journal, 7, 273–283.

    Article  Google Scholar 

  • Thury, M, Gautschi, A, Mazurek, M, and others, 1994, Geology and Hydrogeology of the Crystalline Basement of Northern Switzerland. Synthesis of Regional Investigations 1981–1993 within the Nagra Radioactive Waste Disposal Programme: Nagra, Technical Report, 93-01, 1–347.

    Google Scholar 

  • Treß, E., 1999, Laugungsversuche an Kristallingesteinen des Schwarzwaldes: Unpublished Diploma Thesis, University of Freiburg, 62pp.

    Google Scholar 

  • Waldeck, H., 1970, Der Steinbruch am Artenberg bei Steinach i. K. (Schwarzwald) -eine petrographisch-mineralogische Betrachtung: (N.Jb.Min.), 76, 420–431.

    Google Scholar 

  • White, A. F., Blum, A. E., Bullen, T. D., Vivit, D. V., Schulz, M. and Fitzpatrick, J., 1999, The effect of temperature on experimental and natural chemical weathering rates of granitoid rocks. Geochimica et Cosmochimica Acta 63, 3277–3292.

    Article  Google Scholar 

  • Wollast, R, 1967, Kinetics of the alteration of K-feldspar in buffered solutions at low temperature: Geochimica et Cosmochimica Acta, 31, 635–648.

    Article  Google Scholar 

  • Yardley, B. W. D., Banks, D. A., and Munz, I. A., 1992, Halogen compositions of fluid inclusions as tracers of crustal fluid behaviour. In: Kharaka, Yousif K., and Maest, Ann S., editors, Proceedings of the 7th international symposium on Water-rock interaction; Volume 2, Alberta Research Council, Edmonton, AB, 1137–1140.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bucher, K., Stober, I. (2002). Water-rock reaction experiments with Black Forest gneiss and granite. In: Stober, I., Bucher, K. (eds) Water-Rock Interaction. Water Science and Technology Library, vol 40. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0438-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0438-1_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3906-2

  • Online ISBN: 978-94-010-0438-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics