Skip to main content
  • 459 Accesses

Abstract

Engineering materials are used either for their inherent structural strength or for their functional properties. Often a feed back control loop is designed so that the mechanical response of the material is monitored and the environment that is causing such a response can be controlled. The evolution of a new kind of material termed “Intelligent”, “Smart”, or “Adaptive” by various researchers, e.g., Rogers (1988) and Ahmad (1988), witnesses a significant development in materials science whereby the referred-to smart material adapts itself to suit the environment rather than necessitating to control the same. In this context, development in the area of materials research aims at incorporating intelligence into engineering materials, enabling them to sense the external stimuli and alter their own properties to adapt to the changes in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmad, I. (1988) ‘Smart’ structures and materials, ARO Smart Jvlaterials, Structures & Mathematical Issues Workshop Proceedings. Virginia Polytech. Inst. & State Univ., Blacksburg. VA, Sept. 15-16, pp. 13–16.

    Google Scholar 

  • Andrade, C., Da,. E.N. and Dodd, C. (1946) The effect of an electric field on the viscosity of liquids. Proc. Rov. Soc. (London), Ser. A 187, 296–337.

    Article  ADS  Google Scholar 

  • Bailey, T. and Hubbard, J.E. (1985). Distributed piezoelectric polymer active vibration control of a cantilever beam, J. Guidance 8(5). pp. 605–11.

    Article  MATH  Google Scholar 

  • Cady, W.G. (1946) Piezoelectricify-An Introduction to the Theory & Applications of Electromechanical Phenomena in Crystals, McGraw-Hill Inc., New York.

    Google Scholar 

  • Claus, R.O., McKeeman, J.C., Mary, R.G. & Bennet, K.D. (1988) Optical fibre sensors and signal processing for smart materials and structures, ARO Smart Materials. Structures, and Mathematical Issues Workshop Proceedings. Virginia Polytech. Inst. & State Univ., Blacksburg. VA. Sept. 15-16. pp. 29–38.

    Google Scholar 

  • Conrad, H. and Sprecher, A.F. (1987) Characteristics of ER fluids. Advanced Mats. Conf. Colorado. Feb. 25-27. pp.63–76.

    Google Scholar 

  • Corsaro, R.D. & Sperling, L.H. (1989) Sound and vibration damping with polymers, in Basic Viscoelasticity Definitions and Concepts, ACS Symp., Series 424, Dallas, Texas, Apr. 9-14, pp. 5–22.

    Google Scholar 

  • Crawley, B.F. and Luis, J.D. (1985). Use ofpiezoceramics as distributed actuators in large space structures, AIAA. Paper No. 85-0626, 126–32.

    Google Scholar 

  • Crawley, B.F. and Luis, J.D. (1987). Use of piezoelectric actuators as elements of intelligent structures, AIAA 25(10), 1373–85.

    Article  Google Scholar 

  • Cross, W.B., Kariotis, A.H. and Stimler, F.J. (1969) Nitinol Characterization Study, NASA Contractor Report, NASA CR-1433.

    Google Scholar 

  • Delacy, L., Krishnan, R. V., Tas, H. and Warlimont, H. (1974). Review-Thermoelasticity, pseudoelasticity & the memory effects associated with martensitic transformations, J. Mats. Sci. 9, 1521–35.

    Article  ADS  Google Scholar 

  • Duff, A.W. (1896). The viscosity of polarized dialectrics, Phy. Rev. 4, 23–38.

    ADS  Google Scholar 

  • Ferry, J.D. (1970) Viscoelastic Properties of Polymers. 2nd Edn., Wiley Interscience, New York.

    Google Scholar 

  • Forward, R.L., Swigert, C.J. and Obal, M. (1983) Electronic damping of a large optical bench, Shock and Vibration Bulletin 53, 51–61.

    Google Scholar 

  • Gandhi, M.V. and Thompson, B.S. (1988) A new generation of revolutionary ultra-aAdvanced intelligent composite materials featuring electro-rheological fluids, ARO Smart Materials, Structures and Mathematical Issues Workshop Proceedings, Virginia Polytech. Inst. & State Univ., Blacksburg, VA, Sept. 15-16, 1988, pp. 63–8.

    Google Scholar 

  • Ganeriwala, S.N. and Hartung, H.A. (1989). Fourier transform mechanical analysis and phenomenological representation of viscoelastic material behaviour, ACS Symp. Series 424. Dallas, Texas, Apr. 9-14, 1988, pp. 92–110.

    Google Scholar 

  • Gerber, E.A. & Ballato, A. (1985) Precision Frequency Control, Vol. 1, Academic Press Inc., London.

    Google Scholar 

  • Hagood, N.W., Crawley, B.F., Luis, J.D. and Anderson, E.H. (1988) Development of integrated components for control of intelligent structures, ARO Smart Materials, Structures & Mathematical Issues Workshop Proceedings, Virginia Polytech. Inst. & State Univ., Blacksburg, VA, Sept. 15-16, pp. 80–104.

    Google Scholar 

  • Honein, B., Braga, A.M.B. and Barbone, P. (1991) Wave propagation in piezoelectric layered media with some Applications, J. of Intell. Mater. Syst. & Struct. 2, 542–57.

    Article  Google Scholar 

  • Ikeda, T. (1990) Fundamentals of Piezoelectricity. Tokohu Univ., Japan, Oxford Univ. Press.

    Google Scholar 

  • Jackson, C.M., Wagner, H.J. and Wasilewski, R.J. (1972) 55-Nitinol-The Alloy with a Memory: Its Physical Metallurgy, Properties & Applications. A Report, NASA-SP 5110. Washington. D.C.

    Google Scholar 

  • Kalmann, R.B. & Bartram, j.E. (1960) Control system analysis and design via the’ second’ method of Lyapunov. J. Basic Engg., Trans. of ASME, 371–400.

    Google Scholar 

  • Klass, D.L. and Martinek, T.W. (1967) Electro viscous fluids, I. Rheological properties, J. Appl. Phys. 38, 67–80.

    Article  ADS  Google Scholar 

  • Kraut, B.A. (1969) New mathematical formulation for piezoelectric wave propagation, Physical Review 188(3). 1450–5.

    Article  ADS  Google Scholar 

  • Lee, C.K. O’sullivan, T.C. and Chiang, W.W. (1991) Piezoelectric strain rate sensor and actuator designs for active vibration control, IBM Research Div. Yorktown Heigbts, New York, pp. 1–11.

    Google Scholar 

  • Main, R.P. (1985) Fibre optic sensors-Future light. Sensor Review (GB)5,3 133–9.

    Article  Google Scholar 

  • Murayama, T. (1978) Dynamic Mechanical AnalYSiS of Polymeric Materials, Elsevier Scientific Pub. Co., Oxford.

    Google Scholar 

  • Nashif, A.D., Jones, D.I.G. and Henderson, J.P. (1985) Vibration Damping, Jobn Wiley & Sons, Inc., New York.

    Google Scholar 

  • Olson, H.F. (1956) Electronic control of noise. vibration & reverberation, J. Acoustical Soc. America 28(5). 966–72.

    Article  ADS  Google Scholar 

  • Ramachandran, A.R., Xu, Q.C., Cross, L.E. and Newnham, R.E. (1990) Passive piezoelectric vibration damping. 1st Joint U.S./Japan Conf. on Adaptive Structures, Maui, Hawaii, Nov. 13-15, pp. 525–38.

    Google Scholar 

  • Rogers, C.A. (1988) Workshop summary, ARO Smart Materials, Structures & Mathematical Issues Workshop Proceedings, Virginia Polytech. Inst. & State Univ., Blacksburg, VA, Sept. 15-16, pp. 1–9.

    Google Scholar 

  • Rogers, C.A., Barker, D.K. and Jaeger, C.A. (1988) Introduction to smart materials and structures, ARO Smart Materials, Structures & Mathematical Issues Workshop Proceedings, Virginia Polytech. Inst. & State Univ., Blacksburg, VA, Sept. 15-16, 1988, pp. 17–28.

    Google Scholar 

  • Rogers, C.A., Liang, C. and Barker, D.K. (1988) Dynamic control concepts using SMA reinforced plates, ARO Smart Materials, Structures & Mathematical Issues Workshop Proceedings, Virginia Polytech. Inst. & State Univ., Blacksburg, VA, Sept. 15-16, 1988, pp. 39–62.

    Google Scholar 

  • Sung-Kyu Ha, Charles K. and Fu-Kuo, Chang (1991) Analysis of laminated composites containing distributed piezoelectric ceramics, J. of Intell. Mater. Syst. & Struct. 2, 59–71.

    Article  Google Scholar 

  • Takagi, T. (1990) A Concept of intelligent material, U.S.-Japan Workshop on Smart/Intelligent Materials and Systems, Iqbal, A., Rogers, C.A., Andrew, C. & Masuo, A. (Eds.), Mar. 19-23, 1990, Honolulu, Hawaii, pp.3–10.

    Google Scholar 

  • Uejima, H. (1972) Dialectric mechanism and rheological properties of electro-fluids, Jap. J. Appl. Phys. 11(3), 319–26.

    Article  ADS  Google Scholar 

  • Wayman, C.M. (1989). The nature of the shape memory effect, Proc. 1 st Japan Int. SAMPE Symp., Nov. 28-Dec.1, 1989, pp. 189–94.

    Google Scholar 

  • Wayman, C.M. and Shimizu, K. (1972) The shape memory ‘Marmen’ effect in alloys, Metal Sci. Journal 6, 175–83.

    Article  Google Scholar 

  • Yoshiki, S. and Shun-Ichi, H. (1988) Development of Polymeric Shape Memory Material, Mitsubishi Tech. Bulletin, Mitsubishi Heavy Ind. Ltd., New York, No. 184.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Haddad, Y.M. (2000). Intelligent Materials — An Overview. In: Mechanical Behaviour of Engineering Materials. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0436-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0436-7_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0350-9

  • Online ISBN: 978-94-010-0436-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics