Intelligent Materials — An Overview

  • Yehia M. Haddad

Abstract

Engineering materials are used either for their inherent structural strength or for their functional properties. Often a feed back control loop is designed so that the mechanical response of the material is monitored and the environment that is causing such a response can be controlled. The evolution of a new kind of material termed “Intelligent”, “Smart”, or “Adaptive” by various researchers, e.g., Rogers (1988) and Ahmad (1988), witnesses a significant development in materials science whereby the referred-to smart material adapts itself to suit the environment rather than necessitating to control the same. In this context, development in the area of materials research aims at incorporating intelligence into engineering materials, enabling them to sense the external stimuli and alter their own properties to adapt to the changes in the environment.

Keywords

Zinc Cellulose Fatigue Titanium Nickel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad, I. (1988) ‘Smart’ structures and materials, ARO Smart Jvlaterials, Structures & Mathematical Issues Workshop Proceedings. Virginia Polytech. Inst. & State Univ., Blacksburg. VA, Sept. 15-16, pp. 13–16.Google Scholar
  2. Andrade, C., Da,. E.N. and Dodd, C. (1946) The effect of an electric field on the viscosity of liquids. Proc. Rov. Soc. (London), Ser. A 187, 296–337.ADSCrossRefGoogle Scholar
  3. Bailey, T. and Hubbard, J.E. (1985). Distributed piezoelectric polymer active vibration control of a cantilever beam, J. Guidance 8(5). pp. 605–11.MATHCrossRefGoogle Scholar
  4. Cady, W.G. (1946) Piezoelectricify-An Introduction to the Theory & Applications of Electromechanical Phenomena in Crystals, McGraw-Hill Inc., New York.Google Scholar
  5. Claus, R.O., McKeeman, J.C., Mary, R.G. & Bennet, K.D. (1988) Optical fibre sensors and signal processing for smart materials and structures, ARO Smart Materials. Structures, and Mathematical Issues Workshop Proceedings. Virginia Polytech. Inst. & State Univ., Blacksburg. VA. Sept. 15-16. pp. 29–38.Google Scholar
  6. Conrad, H. and Sprecher, A.F. (1987) Characteristics of ER fluids. Advanced Mats. Conf. Colorado. Feb. 25-27. pp.63–76.Google Scholar
  7. Corsaro, R.D. & Sperling, L.H. (1989) Sound and vibration damping with polymers, in Basic Viscoelasticity Definitions and Concepts, ACS Symp., Series 424, Dallas, Texas, Apr. 9-14, pp. 5–22.Google Scholar
  8. Crawley, B.F. and Luis, J.D. (1985). Use ofpiezoceramics as distributed actuators in large space structures, AIAA. Paper No. 85-0626, 126–32.Google Scholar
  9. Crawley, B.F. and Luis, J.D. (1987). Use of piezoelectric actuators as elements of intelligent structures, AIAA 25(10), 1373–85.CrossRefGoogle Scholar
  10. Cross, W.B., Kariotis, A.H. and Stimler, F.J. (1969) Nitinol Characterization Study, NASA Contractor Report, NASA CR-1433.Google Scholar
  11. Delacy, L., Krishnan, R. V., Tas, H. and Warlimont, H. (1974). Review-Thermoelasticity, pseudoelasticity & the memory effects associated with martensitic transformations, J. Mats. Sci. 9, 1521–35.ADSCrossRefGoogle Scholar
  12. Duff, A.W. (1896). The viscosity of polarized dialectrics, Phy. Rev. 4, 23–38.ADSGoogle Scholar
  13. Ferry, J.D. (1970) Viscoelastic Properties of Polymers. 2nd Edn., Wiley Interscience, New York.Google Scholar
  14. Forward, R.L., Swigert, C.J. and Obal, M. (1983) Electronic damping of a large optical bench, Shock and Vibration Bulletin 53, 51–61.Google Scholar
  15. Gandhi, M.V. and Thompson, B.S. (1988) A new generation of revolutionary ultra-aAdvanced intelligent composite materials featuring electro-rheological fluids, ARO Smart Materials, Structures and Mathematical Issues Workshop Proceedings, Virginia Polytech. Inst. & State Univ., Blacksburg, VA, Sept. 15-16, 1988, pp. 63–8.Google Scholar
  16. Ganeriwala, S.N. and Hartung, H.A. (1989). Fourier transform mechanical analysis and phenomenological representation of viscoelastic material behaviour, ACS Symp. Series 424. Dallas, Texas, Apr. 9-14, 1988, pp. 92–110.Google Scholar
  17. Gerber, E.A. & Ballato, A. (1985) Precision Frequency Control, Vol. 1, Academic Press Inc., London.Google Scholar
  18. Hagood, N.W., Crawley, B.F., Luis, J.D. and Anderson, E.H. (1988) Development of integrated components for control of intelligent structures, ARO Smart Materials, Structures & Mathematical Issues Workshop Proceedings, Virginia Polytech. Inst. & State Univ., Blacksburg, VA, Sept. 15-16, pp. 80–104.Google Scholar
  19. Honein, B., Braga, A.M.B. and Barbone, P. (1991) Wave propagation in piezoelectric layered media with some Applications, J. of Intell. Mater. Syst. & Struct. 2, 542–57.CrossRefGoogle Scholar
  20. Ikeda, T. (1990) Fundamentals of Piezoelectricity. Tokohu Univ., Japan, Oxford Univ. Press.Google Scholar
  21. Jackson, C.M., Wagner, H.J. and Wasilewski, R.J. (1972) 55-Nitinol-The Alloy with a Memory: Its Physical Metallurgy, Properties & Applications. A Report, NASA-SP 5110. Washington. D.C.Google Scholar
  22. Kalmann, R.B. & Bartram, j.E. (1960) Control system analysis and design via the’ second’ method of Lyapunov. J. Basic Engg., Trans. of ASME, 371–400.Google Scholar
  23. Klass, D.L. and Martinek, T.W. (1967) Electro viscous fluids, I. Rheological properties, J. Appl. Phys. 38, 67–80.ADSCrossRefGoogle Scholar
  24. Kraut, B.A. (1969) New mathematical formulation for piezoelectric wave propagation, Physical Review 188(3). 1450–5.ADSCrossRefGoogle Scholar
  25. Lee, C.K. O’sullivan, T.C. and Chiang, W.W. (1991) Piezoelectric strain rate sensor and actuator designs for active vibration control, IBM Research Div. Yorktown Heigbts, New York, pp. 1–11.Google Scholar
  26. Main, R.P. (1985) Fibre optic sensors-Future light. Sensor Review (GB)5,3 133–9.CrossRefGoogle Scholar
  27. Murayama, T. (1978) Dynamic Mechanical AnalYSiS of Polymeric Materials, Elsevier Scientific Pub. Co., Oxford.Google Scholar
  28. Nashif, A.D., Jones, D.I.G. and Henderson, J.P. (1985) Vibration Damping, Jobn Wiley & Sons, Inc., New York.Google Scholar
  29. Olson, H.F. (1956) Electronic control of noise. vibration & reverberation, J. Acoustical Soc. America 28(5). 966–72.ADSCrossRefGoogle Scholar
  30. Ramachandran, A.R., Xu, Q.C., Cross, L.E. and Newnham, R.E. (1990) Passive piezoelectric vibration damping. 1st Joint U.S./Japan Conf. on Adaptive Structures, Maui, Hawaii, Nov. 13-15, pp. 525–38.Google Scholar
  31. Rogers, C.A. (1988) Workshop summary, ARO Smart Materials, Structures & Mathematical Issues Workshop Proceedings, Virginia Polytech. Inst. & State Univ., Blacksburg, VA, Sept. 15-16, pp. 1–9.Google Scholar
  32. Rogers, C.A., Barker, D.K. and Jaeger, C.A. (1988) Introduction to smart materials and structures, ARO Smart Materials, Structures & Mathematical Issues Workshop Proceedings, Virginia Polytech. Inst. & State Univ., Blacksburg, VA, Sept. 15-16, 1988, pp. 17–28.Google Scholar
  33. Rogers, C.A., Liang, C. and Barker, D.K. (1988) Dynamic control concepts using SMA reinforced plates, ARO Smart Materials, Structures & Mathematical Issues Workshop Proceedings, Virginia Polytech. Inst. & State Univ., Blacksburg, VA, Sept. 15-16, 1988, pp. 39–62.Google Scholar
  34. Sung-Kyu Ha, Charles K. and Fu-Kuo, Chang (1991) Analysis of laminated composites containing distributed piezoelectric ceramics, J. of Intell. Mater. Syst. & Struct. 2, 59–71.CrossRefGoogle Scholar
  35. Takagi, T. (1990) A Concept of intelligent material, U.S.-Japan Workshop on Smart/Intelligent Materials and Systems, Iqbal, A., Rogers, C.A., Andrew, C. & Masuo, A. (Eds.), Mar. 19-23, 1990, Honolulu, Hawaii, pp.3–10.Google Scholar
  36. Uejima, H. (1972) Dialectric mechanism and rheological properties of electro-fluids, Jap. J. Appl. Phys. 11(3), 319–26.ADSCrossRefGoogle Scholar
  37. Wayman, C.M. (1989). The nature of the shape memory effect, Proc. 1 st Japan Int. SAMPE Symp., Nov. 28-Dec.1, 1989, pp. 189–94.Google Scholar
  38. Wayman, C.M. and Shimizu, K. (1972) The shape memory ‘Marmen’ effect in alloys, Metal Sci. Journal 6, 175–83.CrossRefGoogle Scholar
  39. Yoshiki, S. and Shun-Ichi, H. (1988) Development of Polymeric Shape Memory Material, Mitsubishi Tech. Bulletin, Mitsubishi Heavy Ind. Ltd., New York, No. 184.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • Yehia M. Haddad
    • 1
  1. 1.Faculty of Engineering, Mechanical EngineeringUniversity of OttawaCanada

Personalised recommendations