Enhancement of Kondo Temperature in Nanometer-Size Point Contacts

  • I. K. Yanson
  • V. V. Fisun
  • J. A. Mydosh
  • J. M. van Ruitenbeek
Part of the NATO Science Series book series (NAII, volume 50)

Abstract

Recently, size effects in scattering of conduction electrons off magnetic impurities has gained a renewed interest [1, 2, 3, 4, 5, 6, 7]. The estimate for the characteristic size of Kondo interaction around paramagnetic impurities embedded in a normal metal equals in order of magnitude ξ K υ F /T K where T K is the characteristic energy scale and υ F is the Fermi velocity. In noble metals with dissolved impurities such as Mn, Cr, and Fe, T K can be quite small (down to ∼ 10−13 K in AuMn alloys [8]), leading to a macroscopic ξK which is easily accessible in experiments. The theory predicts that at low temperatures (T < T K ) the conduction electron spins create a “cloud” around each impurity which compensates the spin of the impurity [9]. At higher temperatures (TT K ), one might think that the same spatial scale determines the logarithmic behavior of the magnetic part of the resistivity as a function of temperature. It is unimportant that the average distance between impurities, even in the most dilute alloys, is much less than ξ K , since the wave functions of spin-screening conduction electrons at each impurity are mutually orthogonal. There are a number of experiments aiming to discover the changes of Kondo interaction across this characteristic spatial scale [2, 3, 10]. In spite of some controversy in experimental interpretation

Keywords

Epoxy AuFe 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Bergmann, Phys. Rev. Lett. 67, 2545 (1991).ADSCrossRefGoogle Scholar
  2. [2]
    M.A. Blachly and N. Giordano, Phys. Rev. B 51, 12537 (1995), and references cited therein.ADSCrossRefGoogle Scholar
  3. [3]
    V. Chandrasekhar, P. Santhanam, N.A. Penebre, R.A. Webb, H. Vloebergs, C. Van Haesendonck, and Y. Bruynseraede, Phys. Rev. Lett. 72, 2053 (1994).ADSCrossRefGoogle Scholar
  4. [4]
    O. Ujsaghy, A. Zawadowski, and B.L. Gyorffy, Phys. Rev. Lett. 76, 2378 (1996).ADSCrossRefGoogle Scholar
  5. [5]
    I. Martin, Y. Wan, and P. Phillips, Phys. Rev. Lett. 78, 114 (1997).ADSCrossRefGoogle Scholar
  6. [6]
    I.K. Yanson, V.V. Fisun, R. Hesper, A.V. Khotkevich, J.M. Krans, J.A. Mydosh, and J.M. van Ruitenbeek, Phys. Rev. Lett. 74, 302 (1995).ADSCrossRefGoogle Scholar
  7. [7]
    I.K. Yanson, V.V. Fisun, A.V. Khotkevich, R. Hesper, J.M. Krans, J.A. Mydosh, and J.M. van Ruitenbeek, Fiz. Nizk. Temp. 20, 1062 (1994) [Low Temp. Phys. 20, 836-846)].Google Scholar
  8. [8]
    J.W. Loram, T.E. Whall, and P.J. Ford, Phys. Rev. B 3, 953 (1971).ADSCrossRefGoogle Scholar
  9. [9]
    E.S. Sørensen and I. Affleck, Phys. Rev. B 53, 9153 (1996).ADSCrossRefGoogle Scholar
  10. [10]
    J.F. DiTusa, K. Lin, M. Park, M.S. Isaacson, and M. Parpia, Phys. Rev. Lett. 68, 678 (1992).ADSCrossRefGoogle Scholar
  11. [11]
    C.J. Muller, J.M. van Ruitenbeek, and L.J. de Jongh, Phys. Rev. Lett. 69, 140 (1992).ADSCrossRefGoogle Scholar
  12. [12]
    I.K. Yanson, V.V. Fisun, N.L. Bobrov, J.A. Mydosh, and J.M. van Ruitenbeek, Fiz. Nizk. Temp. 24, 654 (1998) [Low Temp. Phys. 24, No.7 (1998)].Google Scholar
  13. [13]
    N. van der Post, F.L. Mettes, J.A. Mydosh, J.M. van Ruitenbeek, and I.K. Yanson, Phys. Rev. B 53, R476 (1996).ADSCrossRefGoogle Scholar
  14. [14]
    G. Zarand and L. Udvardi, Physica B 218, 68 (1996).ADSCrossRefGoogle Scholar
  15. [15]
    G. Zarand and L. Udvardi, Phys. Rev. B 54, 7606 (1996).ADSCrossRefGoogle Scholar
  16. [16]
    I.K. Yanson and A.V. Khotkevich, Atlas of Point Contact Spectra of Electron-Phonon Interaction in Metals (Nauka Publish, Kiev, 1980) [Engl, transi.: A.V. Khotkevich and LK. Yanson (Kluwer Academic, New York, 1995)].Google Scholar
  17. [17]
    A.N. Omelyanchuk and I.G. Tuluzov, Fiz. Nizk. Temp. 11, 388 (1984) [ Sov. J. Low Temp. Phys. 11, 211].Google Scholar
  18. [18]
    A.M. Duif, A.G.M. Jansen, and P. Wyder, J. Phys.: Condens. Matter 1, 3157 (1989).ADSCrossRefGoogle Scholar
  19. [19]
    Yu.M. Gal’perin and V.I. Kozub, Fiz. Nizk. Temp. 18, 494 (1992) [Sov. J. Low Temp. Phys. 18, 336].Google Scholar
  20. [20]
    Yu.A. Kolesnichenko, A.N. Omel’yanchuk, and I.G. Tuluzov, Fiz. Nizk. Temp. 21, 851 (1995) [Sov. J. Low Temp. Phys. 21, 655].Google Scholar
  21. [21]
    M.D. Daybell, in Magnetism, edited by G. Rado and H. Suhl (Academic Press, New York, 1973), Vol. 5, p. 121.Google Scholar
  22. [22]
    G. Zarand, private communication.Google Scholar
  23. [23]
    T.A. Costi, Phys. Rev. Lett. 85, 1504 (2000).ADSCrossRefGoogle Scholar
  24. [24]
    A.I. Yanson, I.K. Yanson, and J.M. van Ruitenbeek, Nature (London) 400, 144 (1999).ADSCrossRefGoogle Scholar
  25. [25]
    A.I. Yanson, I.K. Yanson, and J.M. van Ruitenbeek, Phys. Rev. Lett. 84, 5832 (2000).ADSCrossRefGoogle Scholar
  26. [26]
    M. Fowler and A. Zawadowski, Solid State Commun. 9, 471 (1971).ADSCrossRefGoogle Scholar
  27. [27]
    C. Rizutto, Rep. Prog. Phys. 37, 147 (1974).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • I. K. Yanson
    • 1
  • V. V. Fisun
    • 1
  • J. A. Mydosh
    • 2
  • J. M. van Ruitenbeek
    • 2
  1. 1.B. Verkin Institute for Low Temperature Physics and EngineeringNational Academy of SciencesKharkivUkraine
  2. 2.Kamerlingh Onnes LaboratriumLeiden UniversityLeidenThe Netherlands

Personalised recommendations