Enhancement of Kondo Temperature in Nanometer-Size Point Contacts

  • I. K. Yanson
  • V. V. Fisun
  • J. A. Mydosh
  • J. M. van Ruitenbeek
Part of the NATO Science Series book series (NAII, volume 50)


Recently, size effects in scattering of conduction electrons off magnetic impurities has gained a renewed interest [1, 2, 3, 4, 5, 6, 7]. The estimate for the characteristic size of Kondo interaction around paramagnetic impurities embedded in a normal metal equals in order of magnitude ξ K υ F /T K where T K is the characteristic energy scale and υ F is the Fermi velocity. In noble metals with dissolved impurities such as Mn, Cr, and Fe, T K can be quite small (down to ∼ 10−13 K in AuMn alloys [8]), leading to a macroscopic ξK which is easily accessible in experiments. The theory predicts that at low temperatures (T < T K ) the conduction electron spins create a “cloud” around each impurity which compensates the spin of the impurity [9]. At higher temperatures (TT K ), one might think that the same spatial scale determines the logarithmic behavior of the magnetic part of the resistivity as a function of temperature. It is unimportant that the average distance between impurities, even in the most dilute alloys, is much less than ξ K , since the wave functions of spin-screening conduction electrons at each impurity are mutually orthogonal. There are a number of experiments aiming to discover the changes of Kondo interaction across this characteristic spatial scale [2, 3, 10]. In spite of some controversy in experimental interpretation


Contact Diameter Contact Size Kondo Temperature Characteristic Spatial Scale Kondo Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Bergmann, Phys. Rev. Lett. 67, 2545 (1991).ADSCrossRefGoogle Scholar
  2. [2]
    M.A. Blachly and N. Giordano, Phys. Rev. B 51, 12537 (1995), and references cited therein.ADSCrossRefGoogle Scholar
  3. [3]
    V. Chandrasekhar, P. Santhanam, N.A. Penebre, R.A. Webb, H. Vloebergs, C. Van Haesendonck, and Y. Bruynseraede, Phys. Rev. Lett. 72, 2053 (1994).ADSCrossRefGoogle Scholar
  4. [4]
    O. Ujsaghy, A. Zawadowski, and B.L. Gyorffy, Phys. Rev. Lett. 76, 2378 (1996).ADSCrossRefGoogle Scholar
  5. [5]
    I. Martin, Y. Wan, and P. Phillips, Phys. Rev. Lett. 78, 114 (1997).ADSCrossRefGoogle Scholar
  6. [6]
    I.K. Yanson, V.V. Fisun, R. Hesper, A.V. Khotkevich, J.M. Krans, J.A. Mydosh, and J.M. van Ruitenbeek, Phys. Rev. Lett. 74, 302 (1995).ADSCrossRefGoogle Scholar
  7. [7]
    I.K. Yanson, V.V. Fisun, A.V. Khotkevich, R. Hesper, J.M. Krans, J.A. Mydosh, and J.M. van Ruitenbeek, Fiz. Nizk. Temp. 20, 1062 (1994) [Low Temp. Phys. 20, 836-846)].Google Scholar
  8. [8]
    J.W. Loram, T.E. Whall, and P.J. Ford, Phys. Rev. B 3, 953 (1971).ADSCrossRefGoogle Scholar
  9. [9]
    E.S. Sørensen and I. Affleck, Phys. Rev. B 53, 9153 (1996).ADSCrossRefGoogle Scholar
  10. [10]
    J.F. DiTusa, K. Lin, M. Park, M.S. Isaacson, and M. Parpia, Phys. Rev. Lett. 68, 678 (1992).ADSCrossRefGoogle Scholar
  11. [11]
    C.J. Muller, J.M. van Ruitenbeek, and L.J. de Jongh, Phys. Rev. Lett. 69, 140 (1992).ADSCrossRefGoogle Scholar
  12. [12]
    I.K. Yanson, V.V. Fisun, N.L. Bobrov, J.A. Mydosh, and J.M. van Ruitenbeek, Fiz. Nizk. Temp. 24, 654 (1998) [Low Temp. Phys. 24, No.7 (1998)].Google Scholar
  13. [13]
    N. van der Post, F.L. Mettes, J.A. Mydosh, J.M. van Ruitenbeek, and I.K. Yanson, Phys. Rev. B 53, R476 (1996).ADSCrossRefGoogle Scholar
  14. [14]
    G. Zarand and L. Udvardi, Physica B 218, 68 (1996).ADSCrossRefGoogle Scholar
  15. [15]
    G. Zarand and L. Udvardi, Phys. Rev. B 54, 7606 (1996).ADSCrossRefGoogle Scholar
  16. [16]
    I.K. Yanson and A.V. Khotkevich, Atlas of Point Contact Spectra of Electron-Phonon Interaction in Metals (Nauka Publish, Kiev, 1980) [Engl, transi.: A.V. Khotkevich and LK. Yanson (Kluwer Academic, New York, 1995)].Google Scholar
  17. [17]
    A.N. Omelyanchuk and I.G. Tuluzov, Fiz. Nizk. Temp. 11, 388 (1984) [ Sov. J. Low Temp. Phys. 11, 211].Google Scholar
  18. [18]
    A.M. Duif, A.G.M. Jansen, and P. Wyder, J. Phys.: Condens. Matter 1, 3157 (1989).ADSCrossRefGoogle Scholar
  19. [19]
    Yu.M. Gal’perin and V.I. Kozub, Fiz. Nizk. Temp. 18, 494 (1992) [Sov. J. Low Temp. Phys. 18, 336].Google Scholar
  20. [20]
    Yu.A. Kolesnichenko, A.N. Omel’yanchuk, and I.G. Tuluzov, Fiz. Nizk. Temp. 21, 851 (1995) [Sov. J. Low Temp. Phys. 21, 655].Google Scholar
  21. [21]
    M.D. Daybell, in Magnetism, edited by G. Rado and H. Suhl (Academic Press, New York, 1973), Vol. 5, p. 121.Google Scholar
  22. [22]
    G. Zarand, private communication.Google Scholar
  23. [23]
    T.A. Costi, Phys. Rev. Lett. 85, 1504 (2000).ADSCrossRefGoogle Scholar
  24. [24]
    A.I. Yanson, I.K. Yanson, and J.M. van Ruitenbeek, Nature (London) 400, 144 (1999).ADSCrossRefGoogle Scholar
  25. [25]
    A.I. Yanson, I.K. Yanson, and J.M. van Ruitenbeek, Phys. Rev. Lett. 84, 5832 (2000).ADSCrossRefGoogle Scholar
  26. [26]
    M. Fowler and A. Zawadowski, Solid State Commun. 9, 471 (1971).ADSCrossRefGoogle Scholar
  27. [27]
    C. Rizutto, Rep. Prog. Phys. 37, 147 (1974).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • I. K. Yanson
    • 1
  • V. V. Fisun
    • 1
  • J. A. Mydosh
    • 2
  • J. M. van Ruitenbeek
    • 2
  1. 1.B. Verkin Institute for Low Temperature Physics and EngineeringNational Academy of SciencesKharkivUkraine
  2. 2.Kamerlingh Onnes LaboratriumLeiden UniversityLeidenThe Netherlands

Personalised recommendations